Dr Oliver Mathematics
 Advance Level Mathematics Core Mathematics 3: Calculator 1 hour 30 minutes

The total number of marks available is 75 .
You must write down all the stages in your working.

1. Given $y=2 x(3 x-1)^{5}$,
(a) find $\frac{\mathrm{d} y}{\mathrm{~d} x}$, giving your answer as a single fully factorised expression.
(b) Hence find the set of values of x for which $\frac{\mathrm{d} y}{\mathrm{~d} x} \leqslant 0$.
2. The function f is defined by

$$
\mathrm{f}(x)=\frac{6}{2 x+5}+\frac{2}{2 x-5}+\frac{60}{4 x^{2}-25}, x>4 .
$$

(a) Show that

$$
\mathrm{f}(x)=\frac{A}{B x+C},
$$

where A, B, and C are constants to be found.
(b) Find $\mathrm{f}^{-1}(x)$ and state its domain.
3. The value of a car is modelled by the formula

$$
V=16000 \mathrm{e}^{-k t}+A, t \geqslant 0, t \in \mathbb{R},
$$

where V is the value of the car in pounds, t is the age of the car in years, and k and A are positive constants.

Given that the value of the car is $£ 17500$ when new and $£ 13500$ two years later,
(a) find the value of A,
(b) show that
(c) Find the age of the car, in years, when the value of the car is $£ 6000$.

Give your answer to 2 decimal places.
4. Figure 1 shows a sketch of part of the curve C with equation

$$
y=\mathrm{e}^{-2 x}+x^{2}-3
$$

Figure 1: $y=\mathrm{e}^{-2 x}+x^{2}-3$

The curve C crosses the y-axis at the point A. The line l is the normal to C at the point A.
(a) Find the equation of l, writing your answer in the form $y=m x+c$, where m and c are constants.

The line l meets C again at the point B, as shown in Figure 1.
(b) Show that the x-coordinate of B is a solution of

$$
\begin{equation*}
x=\sqrt{1+\frac{1}{2} x-\mathrm{e}^{-2 x}} . \tag{2}
\end{equation*}
$$

Using the iterative formula

$$
x_{n+1}=\sqrt{1+\frac{1}{2} x_{n}-\mathrm{e}^{-2 x_{n}}}
$$

with $x_{1}=1$,
(c) find x_{2} and x_{3} to 3 decimal places.
5. Figure 2 shows part of the graph with equation $y=\mathrm{f}(x)$, where

$$
\mathrm{f}(x)=2|5-x|+3, x \geqslant 0
$$

Figure 2: $\mathrm{f}(x)=2|5-x|+3$

Given that the equation $\mathrm{f}(x)=k$, where k is a constant, has exactly one root,
(a) state the set of possible values of k.
(b) Solve the equation

$$
\begin{equation*}
\mathrm{f}(x)=\frac{1}{2} x+10 \tag{4}
\end{equation*}
$$

The graph with equation

$$
y=\mathrm{f}(x)
$$

is transformed onto the graph with equation

$$
y=4 \mathrm{f}(x-1)
$$

The vertex on the graph with equation $y=4 \mathrm{f}(x-1)$ has coordinates (p, q).
(c) State the value of p and the value of q.
6. (a) Using the identity for $\tan (A \pm B)$, solve, for $-90^{\circ}<x<90^{\circ}$,

$$
\frac{\tan 2 x+\tan 32^{\circ}}{1-\tan 2 x \tan 32^{\circ}}=5
$$

Give your answers, in degrees, to 2 decimal places.
(b) (i) Using the identity for $\tan (A \pm B)$, show that

$$
\begin{equation*}
\tan \left(3 \theta-45^{\circ}\right) \equiv \frac{\tan 3 \theta-1}{1+\tan 3 \theta}, \theta \neq(60 n+45)^{\circ}, n \in \mathbb{Z} \tag{2}
\end{equation*}
$$

(ii) Hence solve, for $0^{\circ}<\theta<180^{\circ}$,

$$
\begin{equation*}
(1+\tan 3 \theta) \tan \left(\theta+28^{\circ}\right)=\tan 3 \theta-1 . \tag{5}
\end{equation*}
$$

7. The curve C has equation

$$
\begin{equation*}
y=\frac{\ln \left(x^{2}+1\right)}{x^{2}+1}, x \in \mathbb{R} . \tag{3}
\end{equation*}
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ as a single fraction, simplifying your answer.
(b) Hence find the exact coordinates of the stationary points of C.
8. (a) By writing
show that

$$
\begin{equation*}
\sec \theta=\frac{1}{\cos \theta} \tag{2}
\end{equation*}
$$

$$
\frac{\mathrm{d}}{\mathrm{~d} \theta}(\sec \theta)=\sec \theta \tan \theta
$$

(b) Given that
show that

$$
\begin{equation*}
x=\mathrm{e}^{\sec y}, x>\mathrm{e}, 0<y<\frac{1}{2} \pi \tag{5}
\end{equation*}
$$

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{x \sqrt{\mathrm{~g}(x)}}, x>\mathrm{e}
$$

where $\mathrm{g}(x)$ is a function of $\ln x$.
9. Solutions based entirely on graphical or numerical methods are not acceptable.
(a) Express

$$
\sin \theta-2 \cos \theta
$$

in the form $R \sin (\theta-\alpha)$, where $R>0$ and $0<\alpha<\frac{1}{2} \pi$.
Give the exact value of R and the value of α, in radians, to 3 decimal places.

$$
\begin{equation*}
M(\theta)=40+(3 \sin \theta-6 \cos \theta)^{2} \tag{3}
\end{equation*}
$$

(b) Find
(i) the maximum value of $M(\theta)$,
(ii) the smallest value of θ, in the range $0<\theta \leqslant 2 \pi$, at which the maximum value of $M(\theta)$ occurs.

$$
\begin{equation*}
N(\theta)=\frac{30}{5+2(\sin 2 \theta-2 \cos 2 \theta)^{2}} \tag{3}
\end{equation*}
$$

(c) Find
(i) the maximum value of $N(\theta)$,
(ii) the largest value of θ, in the range $0<\theta \leqslant 2 \pi$, at which the maximum value of $N(\theta)$ occurs.

