Dr Oliver Mathematics Mathematics: Advanced Higher 2023 Paper 1: Non-Calculator 1 hour

The total number of marks available is 35 .
You must write down all the stages in your working.

1. Given

$$
\begin{equation*}
y=7 x \tan 2 x \tag{2}
\end{equation*}
$$

find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
2. Express

$$
\begin{equation*}
\frac{3 x^{2}-x-14}{(x+3)(x-1)^{2}} \tag{3}
\end{equation*}
$$

in partial fractions.
3. A system of equations is defined by

$$
\begin{align*}
x-3 y+z & =-1 \tag{3}\\
3 x-2 y+4 z & =11 \\
x+4 y+2 z & =15 .
\end{align*}
$$

Use Gaussian elimination to determine whether the system shows redundancy, inconsistency, or has a unique solution.
4. Use integration by parts to find

$$
\begin{equation*}
\int x^{4} \ln x \mathrm{~d} x, x>0 \tag{3}
\end{equation*}
$$

5. Find the particular solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-4 \frac{\mathrm{~d} y}{\mathrm{~d} x}-5 y=10 x^{2}+11 x-23 \tag{9}
\end{equation*}
$$

given that $y=2$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=14$ when $x=0$.
6. (a) Express
in polar form.
(b) Hence, or otherwise, show that z^{3} is real.
7. (a) Find an expression for

$$
\begin{equation*}
\sum_{r=1}^{n}\left(r^{2}+3 r\right) \tag{2}
\end{equation*}
$$

in terms of n.
Express your answer in the form

$$
\frac{1}{3} n(n+a)(n+b) .
$$

(b) Hence, or otherwise, find

$$
\begin{equation*}
\sum_{r=11}^{20}\left(r^{2}+3 r\right) \tag{2}
\end{equation*}
$$

8. (a) Consider the statement:

$$
\begin{equation*}
\text { For all integers } a \text { and } b \text {, if } a<b \text { then } a^{2}<b^{2} \text {. } \tag{1}
\end{equation*}
$$

Find a counterexample to show that the statement is false.
Let n be an odd integer.
(b) Prove directly that $\left(n^{2}-1\right)$ is divisible by 4 .
9. (a) State the matrix \mathbf{A}, associated with an anti-clockwise rotation of $\frac{1}{2} \pi$ radians about the origin.

The matrix \mathbf{B} is given by

$$
\mathbf{B}=\left(\begin{array}{cc}
-\frac{\sqrt{3}}{2} & \frac{1}{2} \\
-\frac{1}{2} & -\frac{\sqrt{3}}{2}
\end{array}\right) .
$$

The matrix given by $\mathbf{A B}$ is associated with an anti-clockwise rotation of α radians about the origin.
(b) (i) Determine AB.
(ii) Find the value of α.
(c) Determine the least positive integer value of n such that $(\mathbf{A B})^{n}=\mathbf{I}$, where $\mathbf{A B}$ is the 2×2 identity matrix.

