Dr Oliver Mathematics
 Further Mathematics Second Order Differential Equations Past Examination Questions

This booklet consists of 37 questions across a variety of examination topics. The total number of marks available is 435 .

1. Find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-6 \frac{\mathrm{~d} y}{\mathrm{~d} x}+8 y=\mathrm{e}^{3 x} \tag{6}
\end{equation*}
$$

2. Find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-8 \frac{\mathrm{~d} y}{\mathrm{~d} x}+16 y=4 x \tag{7}
\end{equation*}
$$

3. (a) Find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+17 y=17 x+36 \tag{7}
\end{equation*}
$$

(b) Show that, when x is large and positive, the solution approximates to a linear function and state the equation of the linear function.
4. Find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+4 \frac{\mathrm{~d} y}{\mathrm{~d} x}+5 y=65 \sin 2 x \tag{9}
\end{equation*}
$$

5. The variables x and y satisfy the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-6 \frac{\mathrm{~d} y}{\mathrm{~d} x}+9 y=\mathrm{e}^{3 x} \tag{3}
\end{equation*}
$$

(a) Find the complementary function.
(b) Explain briefly why there is no particular integral if either of the forms $y=k \mathrm{e}^{3 x}$ or $y=k x \mathrm{e}^{3 x}$.
(c) Given that there is a particular integral of the form $y=k x^{2} \mathrm{e}^{3 x}$, find the value of k.
6. Solve the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}-3 y=2 \mathrm{e}^{-x} \tag{10}
\end{equation*}
$$

given that $y \rightarrow 0$ as $x \rightarrow \infty$ and that $\frac{\mathrm{d} y}{\mathrm{~d} x}=-3$ when $x=0$.
7. The variables x and y satisfy the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+4 \frac{\mathrm{~d} y}{\mathrm{~d} x}=12 \mathrm{e}^{2 x} \tag{6}
\end{equation*}
$$

(a) Find the general solution of the differential equation.
(b) It is given that the curve which represents a particular solution of the differential equation has gradient 6 when $x=0$ and approximates to $y=\mathrm{e}^{2 x}$ when x is large and positive. Find the equation of the curve.
8. A differential equation is given by

$$
\sin ^{2} x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-2 \sin x \cos x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=2 \sin ^{4} x \cos x, 0<x<\pi
$$

(a) Show that the substitution $y=u \sin x$, where u is a function of x, transforms this differential equation into

$$
\begin{equation*}
\frac{\mathrm{d}^{2} u}{\mathrm{~d} x^{2}}+u=\sin 2 x \tag{6}
\end{equation*}
$$

(b) Hence find the general solution to the differential equation

$$
\sin ^{2} x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-2 \sin x \cos x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=2 \sin ^{4} x \cos x
$$

giving your answer in the form $y=\mathrm{f}(x)$.
9. The differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+4 y=\sin k x
$$

is to be solved, where k is a constant.
(a) In the case $k=2$, by using a particular integral of the form $a x \cos 2 x+b x \sin 2 x$, find the general solution.
(b) Describe briefly the behaviour of your solution for y when $x \rightarrow \infty$.
(c) In the case $k \neq 2$, explain briefly whether y would exhibit the same behaviour as in part (b) when $x \rightarrow \infty$.
10. The variables x and y satisfy the differential equation

$$
\begin{equation*}
2 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+3 \frac{\mathrm{~d} y}{\mathrm{~d} x}-2 y=5 \mathrm{e}^{-2 x} \tag{2}
\end{equation*}
$$

(a) Find the complementary function of the differential equation.
(b) Given that there is a particular integral of the form $y=p x \mathrm{e}^{-2 x}$, find the constant p.
(c) Find the solution of the differential equation for which $y=0$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=4$ when $x=0$.
11. Find the solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+3 \frac{\mathrm{~d} y}{\mathrm{~d} x}+5 y=\mathrm{e}^{-x} \tag{11}
\end{equation*}
$$

for which $y=\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ when $x=0$.
12. The variables x and y satisfy the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+16 y=8 \cos 4 x \tag{2}
\end{equation*}
$$

(a) Find the complementary function of the differential equation.
(b) Given that there is a particular integral of the form $y=p x \sin 4 x$, where p is a constant, find the general solution of the differential equation.
(c) Find the solution of the equation for which $y=2$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ when $x=0$.
13. (a) Find the general solution of the differential equation

$$
\begin{equation*}
3 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+5 \frac{\mathrm{~d} y}{\mathrm{~d} x}-2 y=-2 x+13 \tag{7}
\end{equation*}
$$

(b) Find the particular solution for which $y=-\frac{7}{2}$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ when $x=0$.
(c) Write down the function to which y approximates when x is large and positive.
14. (a) Find the complementary function of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+y=\operatorname{cosec} x \tag{2}
\end{equation*}
$$

(b) It is given that

$$
y=p(\ln \sin x) \sin x+q x \cos x
$$

where p and q are constants, is a particular integral of the differential equation.
(i) Show that

$$
\begin{equation*}
p-2(p+q) \sin ^{2} x \equiv 1 \tag{6}
\end{equation*}
$$

(ii) Deduce the values of p and q.
(c) Write down the general solution of the differential equation. State the set of values of x, in the interval $0 \leqslant x \leqslant 2 \pi$, for which the solution is valid, justifying your answer.
15. (a) Find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}-6 \frac{\mathrm{~d} y}{\mathrm{~d} t}+10 y=\mathrm{e}^{2 t} \tag{6}
\end{equation*}
$$

giving your answer in the form $y=\mathrm{f}(t)$.
(b) Given that $x=t^{\frac{1}{2}}, x>0, t>0$, and y is a function of x, show that

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=4 t \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} t} \tag{5}
\end{equation*}
$$

(c) Hence show that the substitution $x=t^{\frac{1}{2}}$ transforms the differential equation

$$
\begin{equation*}
x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-\left(12 x^{2}+1\right) \frac{\mathrm{d} y}{\mathrm{~d} x}+40 x^{3} y=4 x^{3} \mathrm{e}^{2 x^{2}} \tag{2}
\end{equation*}
$$

into

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}-6 \frac{\mathrm{~d} y}{\mathrm{~d} t}+10 y=\mathrm{e}^{2 t} \tag{1}
\end{equation*}
$$

(d) Hence write down the general solution of the differential equation

$$
x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-\left(12 x^{2}+1\right) \frac{\mathrm{d} y}{\mathrm{~d} x}+40 x^{3} y=4 x^{3} \mathrm{e}^{2 x^{2}}
$$

16. (a) Show that the substitution $x=\mathrm{e}^{t}$ transforms the differential equation

$$
\begin{equation*}
x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-4 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+6 y=30+20 \sin (\ln x) \tag{7}
\end{equation*}
$$

into

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}-5 \frac{\mathrm{~d} y}{\mathrm{~d} t}+6 y=3+20 \sin t
$$

(b) Find the general solution of

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}-5 \frac{\mathrm{~d} y}{\mathrm{~d} t}+6 y=3+20 \sin t \tag{11}
\end{equation*}
$$

(c) Write down the general solution of

$$
\begin{equation*}
x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-4 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+6 y=3+20 \sin (\ln x) \tag{1}
\end{equation*}
$$

17. (a) Show that the transformation $y=v x$ transforms the equation

$$
\begin{equation*}
x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+\left(2+9 x^{2}\right) y=x^{5} \tag{5}
\end{equation*}
$$

into the equation

$$
\frac{\mathrm{d}^{2} v}{\mathrm{~d} x^{2}}+9 v=x^{2}
$$

(b) Solve the differential equation (\ddagger) to find v as a function of x.
(c) Hence state the general solution of the differential equation (\dagger).
18. (a) Find the general solution of the differential equation

$$
\begin{equation*}
2 \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}+5 \frac{\mathrm{~d} x}{\mathrm{~d} t}+2 x=2 t+9 \tag{6}
\end{equation*}
$$

(b) Find the particular solution of this differential equation for which $x=3$ and $\frac{\mathrm{d} x}{\mathrm{~d} t}=$ -1 when $t=0$.

The particular solution in part (b) is used to model the motion of a particle P on the x-axis. At time t seconds $(t \geqslant 0), P$ is x metres from the origin O.
(c) Show that the minimum distance between O and P is $\frac{1}{2}(5+\ln 2) \mathrm{m}$ and justify that the distance is a minimum.
19. Given that $3 x \sin 2 x$ is a particular integral of the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+4 y=k \cos 2 x
$$

where k is a constant,
(a) calculate the value of k,
(b) find the particular solution of the differential equation for which at $x=0, y=2$, and for which $x=\frac{\pi}{4}, y=\frac{\pi}{2}$.
20. A scientist is modelling the amount of a chemical in the human bloodstream. The amount x of the chemical, measured in $\mathrm{mg} l^{-1}$, at a time t hours satisfies the differential equation

$$
\begin{equation*}
2 x \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}-6\left(\frac{\mathrm{~d} x}{\mathrm{~d} t}\right)^{2}=x^{2}-3 x^{4}, x>0 \tag{5}
\end{equation*}
$$

(a) Show that the substitution $y=\frac{1}{x^{2}}$ transforms this differential equation into

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+y=3
$$

(b) Find the general solution of the differential equation (\dagger).

Given that at time $t=0, x=\frac{1}{2}$ and $\frac{\mathrm{d} x}{\mathrm{~d} t}=0$,
(c) find an expression for x in terms of t,
(d) write down the maximum values of x as t varies.
21. For the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+3 \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=2 x(x+3) \tag{12}
\end{equation*}
$$

find the solution for which $x=0, \frac{\mathrm{~d} y}{\mathrm{~d} x}=1$, and $y=1$.
22. (a) Find the general solution of the differential equation

$$
\begin{equation*}
3 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-\frac{\mathrm{d} y}{\mathrm{~d} x}-2 y=x^{2} \tag{8}
\end{equation*}
$$

(b) Find the particular solution for which, at $x=0, y=2$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=3$.
23. (a) Find, in terms of k, the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+4 \frac{\mathrm{~d} x}{\mathrm{~d} t}+3 x=k t+5 \tag{7}
\end{equation*}
$$

where k is a constant and $t>0$.
For large values of t, this general solution may be approximated by a linear function.
(b) Given that $k=6$, find the equation of this linear function.
24.

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+4 \frac{\mathrm{~d} y}{\mathrm{~d} x}-5 y=4 \mathrm{e}^{x}
$$

(a) Show that $\lambda x \mathrm{e}^{x}$ is a particular integral of the differential equation, where λ is a constant to be found.
(b) Find general solution of the differential equation.
(c) Find the particular solution for which $y=-\frac{2}{3}$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{4}{3}$ at $x=0$.
25. Find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+6 \frac{\mathrm{~d} x}{\mathrm{~d} t}+10 x=\mathrm{e}^{-4 t} \tag{8}
\end{equation*}
$$

26. Find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+6 \frac{\mathrm{~d} x}{\mathrm{~d} t}+9 x=5 \cos t \tag{10}
\end{equation*}
$$

27.

$$
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+5 \frac{\mathrm{~d} x}{\mathrm{~d} t}+6 x=2 \mathrm{e}^{-t}
$$

Given that $x=0$ and $\frac{\mathrm{d} x}{\mathrm{~d} t}=2$ at $t=0$,
(a) find x in terms of t.

The particular solution in part (a) is used to model the motion of a particle P on the x-axis. At time t seconds, where $t \geqslant 0, P$ is x metres from the origin O.
(b) Show that the maximum distance between O and P is $\frac{2 \sqrt{3}}{9} \mathrm{~m}$ and justify that the distance is a maximum.
28. (a) Find the value of λ for which $y=\lambda x \sin 5 x$ is a particular integral of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+25 y=3 \cos 5 x \tag{3}
\end{equation*}
$$

(b) Using your answer to part (a), the general solution of the differential equation

Given that at $x=0, y=0$, and $\frac{\mathrm{d} y}{\mathrm{~d} x}=5$,
(c) find the particular solution of this differential equation, giving your solution in the form $y=\mathrm{f}(x)$.
(d) Sketch the curve with equation $y=\mathrm{f}(x)$ for $0 \leqslant x \leqslant \pi$.
29. The differential equation

$$
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+6 \frac{\mathrm{~d} x}{\mathrm{~d} t}+9 x=\cos 3 t, t \geqslant 0
$$

describes the motion of a particle along the x-axis.
(a) Find the general solution to this differential equation.
(b) Find the particular solution of this differential equation for which, at $t=0, x=\frac{1}{2}$ and $\frac{\mathrm{d} x}{\mathrm{~d} t}=0$.

On the graph of the particular solution defined in part (b), the first turning point for $t>30$ is the point A.
(c) Find the approximate values for the coordinates of A.
30. Find the general solution to the differential equation

$$
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+5 \frac{\mathrm{~d} x}{\mathrm{~d} t}+6 x=2 \cos t-\sin t
$$

31. (a) Find the value of λ for which $\lambda t^{2} \mathrm{e}^{3 t}$ is a particular integral of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}-6 \frac{\mathrm{~d} y}{\mathrm{~d} t}+9 y=6 \mathrm{e}^{3 t}, t \geqslant 0 \tag{5}
\end{equation*}
$$

(b) Hence find the general solution of the differential equation.

Given that when $t=0, y=5$ and $\frac{\mathrm{d} y}{\mathrm{~d} t}=4$,
(c) find the particular solution of this differential equation, giving your solution in the form $y=\mathrm{f}(t)$.
32. (a) Show that the transformation $y=v x$ transforms the equation

$$
\begin{equation*}
4 x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-8 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+\left(8+4 x^{2}\right) y=x^{4} \tag{6}
\end{equation*}
$$

into the equation

$$
4 \frac{\mathrm{~d}^{2} v}{\mathrm{~d} x^{2}}+4 v=x
$$

(b) Solve the differential equation (\ddagger) to find v as a function of x.
(c) Hence state the general solution of the differential equation (\dagger).
33. (a) Show that the substitution $x=\mathrm{e}^{z}$ transforms the differential equation

$$
\begin{equation*}
x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}-2 y=3 \ln x, x>0 \tag{7}
\end{equation*}
$$

into the equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} z^{2}}+\frac{\mathrm{d} y}{\mathrm{~d} z}-2 y=3 z
$$

(b) Find the general solution of the differential equation (\ddagger).
(c) Hence obtain the general solution of the differential equation (\dagger) giving your answer in the form $y=\mathrm{f}(x)$.
34. (a) Find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+10 y=27 \mathrm{e}^{-x} \tag{6}
\end{equation*}
$$

(b) Find the particular solution that satisfies $y=0$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ when $x=0$.
35. (a) Show that the transformation $x=\mathrm{e}^{u}$ transforms the differential equation

$$
\begin{equation*}
x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-7 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+16 y=2 \ln x, x>0 \tag{6}
\end{equation*}
$$

into the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} u^{2}}-8 \frac{\mathrm{~d} y}{\mathrm{~d} u}+16 y=2 u \tag{7}
\end{equation*}
$$

(b) Find the general solution of the differential equation (II), expressing y as a function of u.
(c) Hence obtain the general solution of the differential equation (I).
36. (a) Show that the transformation $x=\mathrm{e}^{u}$ transforms the differential equation

$$
\begin{equation*}
x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=-x^{-2}, x>0 \tag{6}
\end{equation*}
$$

into the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} u^{2}}-3 \frac{\mathrm{~d} y}{\mathrm{~d} u}+2 y=-\mathrm{e}^{-2 u} \tag{II}
\end{equation*}
$$

(b) Find the general solution of the differential equation (II).
(c) Hence obtain the general solution of the differential equation (I) giving your answer in the form $y=\mathrm{f}(x)$.
37. (a) Find the general solution of the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}=26 \sin 3 x
$$

(b) Find the particular solution of this differential equation for which $y=0$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ when $x=0$.

