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Dr Oliver Mathematics

Further Mathematics

Second Order Differential Equations

Past Examination Questions

This booklet consists of 37 questions across a variety of examination topics.
The total number of marks available is 435.

1. (6)Find the general solution of the differential equation

d2y

dx2
´ 6

dy

dx
` 8y “ e3x.

2. (7)Find the general solution of the differential equation

d2y

dx2
´ 8

dy

dx
` 16y “ 4x.

3. (a) (7)Find the general solution of the differential equation

d2y

dx2
` 2

dy

dx
` 17y “ 17x` 36.

(b) (2)Show that, when x is large and positive, the solution approximates to a linear
function and state the equation of the linear function.

4. (9)Find the general solution of the differential equation

d2y

dx2
` 4

dy

dx
` 5y “ 65 sin 2x.

5. The variables x and y satisfy the differential equation

d2y

dx2
´ 6

dy

dx
` 9y “ e3x.

(a) (3)Find the complementary function.

(b) (1)Explain briefly why there is no particular integral if either of the forms y “ ke3x or
y “ kxe3x.

(c) (5)Given that there is a particular integral of the form y “ kx2e3x, find the value of k.
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6. (10)Solve the differential equation

d2y

dx2
´ 2

dy

dx
´ 3y “ 2e´x

given that y Ñ 0 as xÑ 8 and that
dy

dx
“ ´3 when x “ 0.

7. The variables x and y satisfy the differential equation

d2y

dx2
` 4

dy

dx
“ 12e2x.

(a) (6)Find the general solution of the differential equation.

(b) (4)It is given that the curve which represents a particular solution of the differential
equation has gradient 6 when x “ 0 and approximates to y “ e2x when x is large
and positive. Find the equation of the curve.

8. A differential equation is given by

sin2 x
d2y

dx2
´ 2 sinx cosx

dy

dx
` 2y “ 2 sin4 x cosx, 0 ă x ă π.

(a) (5)Show that the substitution y “ u sinx, where u is a function of x, transforms this
differential equation into

d2u

dx2
` u “ sin 2x.

(b) (6)Hence find the general solution to the differential equation

sin2 x
d2y

dx2
´ 2 sinx cosx

dy

dx
` 2y “ 2 sin4 x cosx

giving your answer in the form y “ fpxq.

9. The differential equation
d2y

dx2
` 4y “ sin kx

is to be solved, where k is a constant.

(a) (7)In the case k “ 2, by using a particular integral of the form ax cos 2x ` bx sin 2x,
find the general solution.

(b) (2)Describe briefly the behaviour of your solution for y when xÑ 8.

(c) (2)In the case k ‰ 2, explain briefly whether y would exhibit the same behaviour as
in part (b) when xÑ 8.
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10. The variables x and y satisfy the differential equation

2
d2y

dx2
` 3

dy

dx
´ 2y “ 5e´2x.

(a) (2)Find the complementary function of the differential equation.

(b) (4)Given that there is a particular integral of the form y “ pxe´2x, find the constant
p.

(c) (5)Find the solution of the differential equation for which y “ 0 and
dy

dx
“ 4 when

x “ 0.

11. (11)Find the solution of the differential equation

d2y

dx2
` 3

dy

dx
` 5y “ e´x

for which y “
dy

dx
“ 0 when x “ 0.

12. The variables x and y satisfy the differential equation

d2y

dx2
` 16y “ 8 cos 4x.

(a) (2)Find the complementary function of the differential equation.

(b) (6)Given that there is a particular integral of the form y “ px sin 4x, where p is a
constant, find the general solution of the differential equation.

(c) (4)Find the solution of the equation for which y “ 2 and
dy

dx
“ 0 when x “ 0.

13. (a) (7)Find the general solution of the differential equation

3
d2y

dx2
` 5

dy

dx
´ 2y “ ´2x` 13.

(b) (5)Find the particular solution for which y “ ´7
2

and
dy

dx
“ 0 when x “ 0.

(c) (1)Write down the function to which y approximates when x is large and positive.

14. (a) (2)Find the complementary function of the differential equation

d2y

dx2
` y “ cosecx.
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(b) It is given that
y “ ppln sinxq sinx` qx cosx,

where p and q are constants, is a particular integral of the differential equation.

(i) (6)Show that
p´ 2pp` qq sin2 x ” 1.

(ii) (2)Deduce the values of p and q.

(c) (3)Write down the general solution of the differential equation. State the set of values
of x, in the interval 0 ď x ď 2π, for which the solution is valid, justifying your
answer.

15. (a) (6)Find the general solution of the differential equation

d2y

dt2
´ 6

dy

dt
` 10y “ e2t,

giving your answer in the form y “ fptq.

(b) (5)Given that x “ t
1
2 , x ą 0, t ą 0, and y is a function of x, show that

d2y

dx2
“ 4t

d2y

dt2
` 2

dy

dt
.

(c) (2)Hence show that the substitution x “ t
1
2 transforms the differential equation

x
d2y

dx2
´ p12x2 ` 1q

dy

dx
` 40x3y “ 4x3e2x

2

into
d2y

dt2
´ 6

dy

dt
` 10y “ e2t.

(d) (1)Hence write down the general solution of the differential equation

x
d2y

dx2
´ p12x2 ` 1q

dy

dx
` 40x3y “ 4x3e2x

2

.

16. (a) (7)Show that the substitution x “ et transforms the differential equation

x2
d2y

dx2
´ 4x

dy

dx
` 6y “ 30` 20 sinplnxq

into
d2y

dt2
´ 5

dy

dt
` 6y “ 3` 20 sin t.
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(b) (11)Find the general solution of

d2y

dt2
´ 5

dy

dt
` 6y “ 3` 20 sin t.

(c) (1)Write down the general solution of

x2
d2y

dx2
´ 4x

dy

dx
` 6y “ 3` 20 sinplnxq.

17. (a) (5)Show that the transformation y “ vx transforms the equation

x2
d2y

dx2
´ 2x

dy

dx
` p2` 9x2qy “ x5 p:q

into the equation
d2v

dx2
` 9v “ x2. p;q

(b) (6)Solve the differential equation p;q to find v as a function of x.

(c) (1)Hence state the general solution of the differential equation p:q.

18. (a) (6)Find the general solution of the differential equation

2
d2x

dt2
` 5

dx

dt
` 2x “ 2t` 9.

(b) (4)Find the particular solution of this differential equation for which x “ 3 and
dx

dt
“

´1 when t “ 0.

The particular solution in part (b) is used to model the motion of a particle P on the
x-axis. At time t seconds (t ě 0), P is x metres from the origin O.

(c) (4)Show that the minimum distance between O and P is 1
2
p5` ln 2q m and justify that

the distance is a minimum.

19. Given that 3x sin 2x is a particular integral of the differential equation

d2y

dx2
` 4y “ k cos 2x,

where k is a constant,

(a) (4)calculate the value of k,

(b) (4)find the particular solution of the differential equation for which at x “ 0, y “ 2,
and for which x “ π

4
, y “ π

2
.
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20. A scientist is modelling the amount of a chemical in the human bloodstream. The
amount x of the chemical, measured in mg l´1, at a time t hours satisfies the differential
equation

2x
d2x

dt2
´ 6

ˆ

dx

dt

˙2

“ x2 ´ 3x4, x ą 0.

(a) (5)Show that the substitution y “
1

x2
transforms this differential equation into

d2y

dt2
` y “ 3. p:q

(b) (4)Find the general solution of the differential equation p:q.

Given that at time t “ 0, x “ 1
2

and
dx

dt
“ 0,

(c) (4)find an expression for x in terms of t,

(d) (1)write down the maximum values of x as t varies.

21. (12)For the differential equation

d2y

dx2
` 3

dy

dx
` 2y “ 2xpx` 3q,

find the solution for which x “ 0,
dy

dx
“ 1, and y “ 1.

22. (a) (8)Find the general solution of the differential equation

3
d2y

dx2
´

dy

dx
´ 2y “ x2.

(b) (6)Find the particular solution for which, at x “ 0, y “ 2 and
dy

dx
“ 3.

23. (a) (7)Find, in terms of k, the general solution of the differential equation

d2x

dt2
` 4

dx

dt
` 3x “ kt` 5,

where k is a constant and t ą 0.

For large values of t, this general solution may be approximated by a linear function.

(b) (2)Given that k “ 6, find the equation of this linear function.

24.
d2y

dx2
` 4

dy

dx
´ 5y “ 4ex.

6



Dr Oliver 
Mathematics 

 
Dr Oliver 

Mathematics 
 

Dr Oliver 
Mathematics 

 
Dr Oliver 

Mathematics 
 

Dr Oliver 
Mathematics 

 
Dr Oliver 

Mathematics 

(a) (4)Show that λxex is a particular integral of the differential equation, where λ is a
constant to be found.

(b) (4)Find general solution of the differential equation.

(c) (5)Find the particular solution for which y “ ´2
3

and
dy

dx
“ ´4

3
at x “ 0.

25. (8)Find the general solution of the differential equation

d2x

dt2
` 6

dx

dt
` 10x “ e´4t.

26. (10)Find the general solution of the differential equation

d2x

dt2
` 6

dx

dt
` 9x “ 5 cos t.

27.
d2x

dt2
` 5

dx

dt
` 6x “ 2e´t.

Given that x “ 0 and
dx

dt
“ 2 at t “ 0,

(a) (8)find x in terms of t.

The particular solution in part (a) is used to model the motion of a particle P on the
x-axis. At time t seconds, where t ě 0, P is x metres from the origin O.

(b) (7)Show that the maximum distance between O and P is 2
?
3

9
m and justify that the

distance is a maximum.

28. (a) (4)Find the value of λ for which y “ λx sin 5x is a particular integral of the differential
equation

d2y

dx2
` 25y “ 3 cos 5x.

(b) (3)Using your answer to part (a), the general solution of the differential equation

Given that at x “ 0, y “ 0, and
dy

dx
“ 5,

(c) (5)find the particular solution of this differential equation, giving your solution in the
form y “ fpxq.

(d) (2)Sketch the curve with equation y “ fpxq for 0 ď x ď π.

29. The differential equation

d2x

dt2
` 6

dx

dt
` 9x “ cos 3t, t ě 0,

describes the motion of a particle along the x-axis.
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(a) (8)Find the general solution to this differential equation.

(b) (5)Find the particular solution of this differential equation for which, at t “ 0, x “ 1
2

and
dx

dt
“ 0.

On the graph of the particular solution defined in part (b), the first turning point for
t ą 30 is the point A.

(c) (2)Find the approximate values for the coordinates of A.

30. (9)Find the general solution to the differential equation

d2x

dt2
` 5

dx

dt
` 6x “ 2 cos t´ sin t.

31. (a) (5)Find the value of λ for which λt2e3t is a particular integral of the differential equation

d2y

dt2
´ 6

dy

dt
` 9y “ 6e3t, t ě 0.

(b) (3)Hence find the general solution of the differential equation.

Given that when t “ 0, y “ 5 and
dy

dt
“ 4,

(c) (5)find the particular solution of this differential equation, giving your solution in the
form y “ fptq.

32. (a) (6)Show that the transformation y “ vx transforms the equation

4x2
d2y

dx2
´ 8x

dy

dx
` p8` 4x2qy “ x4 p:q

into the equation

4
d2v

dx2
` 4v “ x. p;q

(b) (6)Solve the differential equation p;q to find v as a function of x.

(c) (1)Hence state the general solution of the differential equation p:q.

33. (a) (7)Show that the substitution x “ ez transforms the differential equation

x2
d2y

dx2
` 2x

dy

dx
´ 2y “ 3 lnx, x ą 0, p:q

into the equation
d2y

dz2
`

dy

dz
´ 2y “ 3z. p;q
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(b) (6)Find the general solution of the differential equation p;q.

(c) (1)Hence obtain the general solution of the differential equation p:q giving your answer
in the form y “ fpxq.

34. (a) (6)Find the general solution of the differential equation

d2y

dx2
` 2

dy

dx
` 10y “ 27e´x.

(b) (6)Find the particular solution that satisfies y “ 0 and
dy

dx
“ 0 when x “ 0.

35. (a) (6)Show that the transformation x “ eu transforms the differential equation

x2
d2y

dx2
´ 7x

dy

dx
` 16y “ 2 lnx, x ą 0, (I)

into the differential equation

d2y

du2
´ 8

dy

du
` 16y “ 2u (II).

(b) (7)Find the general solution of the differential equation (II), expressing y as a function
of u.

(c) (1)Hence obtain the general solution of the differential equation (I).

36. (a) (6)Show that the transformation x “ eu transforms the differential equation

x2
d2y

dx2
´ 2x

dy

dx
` 2y “ ´x´2, x ą 0, (I)

into the differential equation

d2y

du2
´ 3

dy

du
` 2y “ ´e´2u (II).

(b) (7)Find the general solution of the differential equation (II).

(c) (1)Hence obtain the general solution of the differential equation (I) giving your answer
in the form y “ fpxq.

37. (a) (8)Find the general solution of the differential equation

d2y

dx2
´ 2

dy

dx
“ 26 sin 3x.

(b) (5)Find the particular solution of this differential equation for which y “ 0 and
dy

dx
“ 0

when x “ 0.
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