Year 12 Definitions

Dr Oliver

Revision Part 1

Discriminant

What is the discriminant?

Discriminant

What is the discriminant?

If

$$
a x^{2}+b x+c=0,
$$

then the discriminant is

$$
b^{2}-4 a c
$$

The discriminant reveals what type of roots the equation has:

$$
\begin{array}{ll}
\hline b^{2}-4 a c & \text { Roots } \\
\hline b^{2}-4 a c>0 \\
b^{2}-4 a c=0 \\
b^{2}-4 a c<0 &
\end{array}
$$

Discriminant

What is the discriminant?

If

$$
a x^{2}+b x+c=0,
$$

then the discriminant is

$$
b^{2}-4 a c
$$

The discriminant reveals what type of roots the equation has:

$b^{2}-4 a c$	Roots
$b^{2}-4 a c>0$	two distinct real roots
$b^{2}-4 a c=0$	
$b^{2}-4 a c<0$	

Discriminant

What is the discriminant?

If

$$
a x^{2}+b x+c=0
$$

then the discriminant is

$$
b^{2}-4 a c
$$

The discriminant reveals what type of roots the equation has:

$b^{2}-4 a c$	Roots
$b^{2}-4 a c>0$	two distinct real roots
$b^{2}-4 a c=0$	one distinct real root that is repeated
$b^{2}-4 a c<0$	

Discriminant

What is the discriminant?

If

$$
a x^{2}+b x+c=0
$$

then the discriminant is

$$
b^{2}-4 a c
$$

The discriminant reveals what type of roots the equation has:

$b^{2}-4 a c$	Roots
$b^{2}-4 a c>0$	two distinct real roots
$b^{2}-4 a c=0$	one distinct real root that is repeated
$b^{2}-4 a c<0$	two complex conjugate roots

Exact values

	0°	30°	45°	60°	90°
\sin					
\cos					
\tan					

Exact values

	0°	30°	45°	60°	90°
\sin	0				
\cos					
\tan					

Exact values

	0°	30°	45°	60°	90°
\sin	0	$\frac{1}{2}$			
\cos					
\tan					

Exact values

	0°	30°	45°	60°	90°
\sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$		
\cos					
\tan					

Exact values

	0°	30°	45°	60°	90°
\sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	
\cos					
\tan					

Exact values

	0°	30°	45°	60°	90°
\sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
\cos					
\tan					

Exact values

	0°	30°	45°	60°	90°
\sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
\cos	1				
\tan					

Exact values

	0°	30°	45°	60°	90°
\sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
\cos	1	$\frac{\sqrt{3}}{2}$			
\tan					

Exact values

	0°	30°	45°	60°	90°
\sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
\cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$		
\tan					

Exact values

	0°	30°	45°	60°	90°
\sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
\cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	
\tan					

Exact values

	0°	30°	45°	60°	90°
\sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
\cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
\tan					

Exact values

	0°	30°	45°	60°	90°
\sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
\cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
\tan	0				

Exact values

	0°	30°	45°	60°	90°
\sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
\cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
\tan	0	$\frac{1}{\sqrt{3}}$			

Exact values

	0°	30°	45°	60°	90°
\sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
\cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
\tan	0	$\frac{1}{\sqrt{3}}$	1		

Exact values

	0°	30°	45°	60°	90°
\sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
\cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
\tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	

Exact values

	0°	30°	45°	60°	90°
\sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
\cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
\tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	-

Squares and cubes

$17^{2}=$

Squares and cubes

$$
17^{2}=289
$$

Squares and cubes

$$
17^{2}=289 \quad 7^{3}=
$$

Squares and cubes

$$
17^{2}=289 \quad 7^{3}=343
$$

Squares and cubes

$$
\begin{array}{ll}
17^{2}=289 & 7^{3}=343 \\
19^{2}= &
\end{array}
$$

Squares and cubes

$$
\begin{array}{ll}
17^{2}=289 & 7^{3}=343 \\
19^{2}=361
\end{array}
$$

Squares and cubes

$$
\begin{array}{ll}
17^{2}=289 & 7^{3}=343 \\
19^{2}=361 & 6^{3}=
\end{array}
$$

Squares and cubes

$$
\begin{array}{ll}
17^{2}=289 & 7^{3}=343 \\
19^{2}=361 & 6^{3}=216
\end{array}
$$

Squares and cubes

$$
\begin{array}{ll}
17^{2}=289 & 7^{3}=343 \\
19^{2}=361 & 6^{3}=216 \\
11^{2}= &
\end{array}
$$

Squares and cubes

$$
\begin{array}{ll}
17^{2}=289 & 7^{3}=343 \\
19^{2}=361 & 6^{3}=216 \\
11^{2}=121 &
\end{array}
$$

Squares and cubes

$$
\begin{array}{ll}
17^{2}=289 & 7^{3}=343 \\
19^{2}=361 & 6^{3}=216 \\
11^{2}=121 & 9^{3}=
\end{array}
$$

Squares and cubes

$$
\begin{array}{ll}
17^{2}=289 & 7^{3}=343 \\
19^{2}=361 & 6^{3}=216 \\
11^{2}=121 & 9^{3}=729
\end{array}
$$

Expressions and equations

What is the difference between an expression and an equation?

Expressions and equations

What is the difference between an expression and an equation?

An equation is a mathematical "sentence" that says that two things are equal; for example, $3 x+1=5$ says that if you multiply x by 3 and add 1 , you will get 5 .

What is the difference between an expression and an equation?

An equation is a mathematical "sentence" that says that two things are equal; for example, $3 x+1=5$ says that if you multiply x by 3 and add 1 , you will get 5 .

An expression is a mathematical "phrase" that stands for a single number; for example, $3 x+1$ is an expression whose value is three times the value of x, plus 1 , whatever value the variable x might have.

What is the difference between an expression and an equation?

An equation is a mathematical "sentence" that says that two things are equal; for example, $3 x+1=5$ says that if you multiply x by 3 and add 1 , you will get 5 .

An expression is a mathematical "phrase" that stands for a single number; for example, $3 x+1$ is an expression whose value is three times the value of x, plus 1 , whatever value the variable x might have.

An equation consists of two expressions connected by an equals sign. It can only be true or false. An expression is never true or false.

Transformations of graphs

Given the graph of $y=\mathrm{f}(x)$, how can you draw the graph of $y=\mathrm{f}(2 x)$?

Given the graph of $y=\mathrm{f}(x)$, how can you draw the graph of $y=|\mathrm{f}(x)|$?

Given the graph of $y=\mathrm{f}(x)$, how can you draw the graph of $y=\mathrm{f}(|x|)$?

Transformations of graphs

Given the graph of $y=\mathrm{f}(x)$, how can you draw the graph of $y=\mathrm{f}(2 x)$?
Horizontal stretch, scale factor $\frac{1}{2}$.
Given the graph of $y=\mathrm{f}(x)$, how can you draw the graph of $y=|\mathrm{f}(x)|$?

Given the graph of $y=\mathrm{f}(x)$, how can you draw the graph of $y=\mathrm{f}(|x|)$?

Transformations of graphs

Given the graph of $y=\mathrm{f}(x)$, how can you draw the graph of $y=\mathrm{f}(2 x)$?
Horizontal stretch, scale factor $\frac{1}{2}$.
Given the graph of $y=\mathrm{f}(x)$, how can you draw the graph of $y=|\mathrm{f}(x)|$?
Reflect any part of the graph that is below the x-axis in the x-axis and leave the rest of the graph alone.

Given the graph of $y=\mathrm{f}(x)$, how can you draw the graph of $y=\mathrm{f}(|x|)$?

Transformations of graphs

Given the graph of $y=\mathrm{f}(x)$, how can you draw the graph of $y=\mathrm{f}(2 x)$?
Horizontal stretch, scale factor $\frac{1}{2}$.
Given the graph of $y=\mathrm{f}(x)$, how can you draw the graph of $y=|\mathrm{f}(x)|$?
Reflect any part of the graph that is below the x-axis in the x-axis and leave the rest of the graph alone.

Given the graph of $y=\mathrm{f}(x)$, how can you draw the graph of $y=\mathrm{f}(|x|)$?
Discard the part of the graph to the left of the y-axis and reflect the rest of the graph in the y-axis.

