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Induction

In this note, we explore induction.

There are three steps to doing induction:

(a) Show that a propositional form P pxq is true for some basis case.

(b) Assume that P pnq is true for some n, and show that this implies that P pn` 1q is true.

(c) Then, by the principle of induction, the propositional form P pxq is true for all n greater
or equal to the basis case.

In the first example, we start with a famous case.

Example 1
Prove that

1` 2` . . .` n “ 1
2
npn` 1q.

Solution
Base case: Let us see what the case looks like taking the LHS and RHS separately.

1 “ 1,
1
2
ˆ 1ˆ 2 “ 1,

and we agree. So n “ 1 is true.

Induction: Suppose the solution is true for n “ k, i.e.,

1` 2` . . .` k “ 1
2
kpk ` 1q.

Then

1` 2` . . .` k ` pk ` 1q “ 1
2
kpk ` 1q ` pk ` 1q (by the inductive hypothesis)

“ 1
2
pk ` 1qrk ` 2s,

and so the result is true for n “ k ` 1.

Hence, by mathematical induction, the expression is true for all n P N, as required. �.

Example 2
Prove that

12
` 22

` . . .` n2
“ 1

6
npn` 1qp2n` 1q.
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Solution
Base case: Let us see what the case looks like taking the LHS and RHS separately.

12
“ 1,

1
6
ˆ 1ˆ 2ˆ 3 “ 1,

and we agree. So n “ 1 is true.

Induction: Suppose the solution is true for n “ k, i.e.,

12
` 22

` . . .` k2
“ 1

6
kpk ` 1qp2k ` 1q.

Then

12
` 22

` . . .` k2
` pk ` 1q2 “ 1

6
kpk ` 1qp2k ` 1q ` pk ` 1q2 (by the inductive hypothesis)

“ 1
6
pk ` 1qrkp2k ` 1q ` 6pk ` 1qs

“ 1
3
pk ` 1qp2k2

` 7k ` 6q

“ 1
3
pk ` 1qpk ` 2qp2k ` 3q

“ 1
3
pk ` 1qpk ` 2qr2pk ` 1q ` 1s,

and so the result is true for n “ k ` 1.

Hence, by mathematical induction, the expression is true for all n P N, as required. �.

Here are two examples for you to try: if you like that, go the the “A Level Further Mathe-
matics” page and click on “Induction Questions” link.

1. Prove that
13
` 23

` . . .` n3
“ 1

4
n2
pn` 1q2.

Solution

Base case: Let us see what the case looks like taking the LHS and RHS separately.

13
“ 1,

1
4
ˆ 12

ˆ 22
“ 1,

and we agree. So n “ 1 is true.

Induction: Suppose the solution is true for n “ k, i.e.,

13
` 23

` . . .` k3
“ 1

4
k2
pk ` 1q2.
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Then

13
` 23

` . . .` k3
` pk ` 1q3

“ 1
4
k2
pk ` 1q2 ` pk ` 1q3 (by the inductive hypothesis)

“ 1
4
pk ` 1q2rk2

` 4pk ` 1qs

“ 1
3
pk ` 1q2pk2

` 4k ` 4q

“ 1
3
pk ` 1q2pk ` 2q2,

and so the result is true for n “ k ` 1.

Hence, by mathematical induction, the expression is true for all n P N, as required.

2. Prove by induction that 11n ´ 6 is divisible by 5 for every positive integer n.

Solution

Base case: if n “ 1, we have

111
´ 6 “ 11´ 6 “ 5,

so n “ 1 is true.

Induction: Suppose the solution is true for n “ k, i.e.,

11k
´ 6

is divisible by 5. Then

11k
´ 6 “ 5mñ 11k

“ 5m` 6

for some positive integer m. Then

11k`1
´ 6 “ p11ˆ 11k

q ´ 6

“ 11p5m` 6q ´ 6 (by the inductive hypothesis)

“ 55m` 60

“ 5p11m` 12q,

and so the result is true for n “ k ` 1.

Hence, by mathematical induction, the expression is true for all n P N, as required.
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