Dr Oliver Mathematics Mathematics: Advanced Higher 2011 Paper 3 hours

The total number of marks available is 100 .
You must write down all the stages in your working.

1. Express

$$
\begin{equation*}
\frac{13-x}{x^{2}+4 x-5} \tag{5}
\end{equation*}
$$

in partial fractions and hence obtain

$$
\int\left(\frac{13-x}{x^{2}+4 x-5}\right) \mathrm{d} x
$$

2. Use the binomial theorem to expand

$$
\begin{equation*}
\left(\frac{1}{2} x-3\right)^{4} \tag{3}
\end{equation*}
$$

and simplify your answer.
3. (a) Obtain $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when y is defined as a function of x by the equation

$$
\begin{equation*}
y+\mathrm{e}^{y}=x^{2} \tag{3}
\end{equation*}
$$

(b) Given
obtain $\mathrm{f}^{\prime}(x)$.
4. (a) For what value of λ is
singular?
(b) For

$$
\left(\begin{array}{ccc}
1 & 2 & -1 \tag{3}\\
3 & 0 & 2 \\
-1 & \lambda & 6
\end{array}\right)
$$

$$
\begin{equation*}
\mathrm{f}(x)=\sin x \cos ^{3} x \tag{3}
\end{equation*}
$$

(a) For what value of λ is

$$
\mathbf{A}=\left(\begin{array}{ccc}
2 & 2 \alpha-\beta & -1 \\
3 \alpha+2 \beta & 4 & 3 \\
-1 & 3 & 2
\end{array}\right)
$$

obtain values of α and β such that

$$
\mathbf{A}^{\mathrm{T}}=\left(\begin{array}{ccc}
2 & -5 & -1 \\
-1 & 4 & 3 \\
-1 & 3 & 2
\end{array}\right)
$$

5. (a) Obtain the first four terms in the Maclaurin series of

$$
\begin{equation*}
\sqrt{1+x} \tag{4}
\end{equation*}
$$

and hence write down the first four terms in the Maclaurin series of

$$
\sqrt{1+x^{2}}
$$

(b) Hence obtain the first four terms in the Maclaurin series of

$$
\begin{equation*}
\sqrt{(1+x)\left(1+x^{2}\right)} \tag{2}
\end{equation*}
$$

6. The diagram shows part of the graph of a function $\mathrm{f}(x)$.

Sketch the graph of $\left|\mathrm{f}^{-1}(x)\right|$, showing the points of intersection with the axes.
7. A curve is defined by the equation

$$
\begin{equation*}
y=\frac{\mathrm{e}^{\sin x}(2+x)^{3}}{\sqrt{1-x}} \text { for } x<1 . \tag{4}
\end{equation*}
$$

Calculate the gradient of the curve when $x=0$.
8. (a) Write down an expression for

$$
\begin{equation*}
\sum_{r=1}^{n} r^{3}-\left(\sum_{r=1}^{n} r\right)^{2} \tag{1}
\end{equation*}
$$

(b) Write down an expression for

$$
\begin{equation*}
\sum_{r=1}^{n} r^{3}+\left(\sum_{r=1}^{n} r\right)^{2} \tag{3}
\end{equation*}
$$

9. Given that $y>-1$ and $x>-1$, obtain the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=3(1+y) \sqrt{1+x} \tag{5}
\end{equation*}
$$

expressing your answer in the form $y=\mathrm{f}(x)$.
10. Identify the locus in the complex plane given by

$$
\begin{equation*}
|z-1|=3 \tag{5}
\end{equation*}
$$

Show in a diagram the region given by

$$
|z-1|=3
$$

11. (a) Obtain the exact value of

$$
\begin{equation*}
\int_{0}^{\frac{1}{4} \pi}(\sec x-x)(\sec x+x) \mathrm{d} x \tag{3}
\end{equation*}
$$

(b) Find

$$
\int \frac{x}{\sqrt{1-49 x^{4}}} \mathrm{~d} x
$$

12. Prove by induction that

$$
\begin{equation*}
8^{n}+3^{n-2} \tag{5}
\end{equation*}
$$

is divisible by 5 for all integers $n \geqslant 2$.
13. (a) The first three terms of an arithmetic sequence are

$$
\begin{equation*}
a, \frac{1}{a}, 1 \tag{5}
\end{equation*}
$$

where $a<0$.
Obtain the value of a and the common difference.
(b) Obtain the smallest value of n for which the sum of the first n terms is greater than 1000.
14. (a) Find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-\frac{\mathrm{d} y}{\mathrm{~d} x}-2 y=\mathrm{e}^{x}+12 \tag{7}
\end{equation*}
$$

(b) Find the particular solution for which $y=-\frac{3}{2}$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2}$ when $x=0$.
15. The lines L_{1} and L_{2} are given by the equations

$$
\frac{x-1}{k}=\frac{y}{-1}=\frac{z+3}{1} \text { and } \frac{x-4}{1}=\frac{y+3}{1}=\frac{z+3}{2},
$$

respectively.
Find
(a) the value of k for which L_{1} and L_{2} intersect and the point of intersection,
(b) the acute angle between L_{1} and L_{2}.
16. Define

$$
I_{n}=\int_{0}^{1} \frac{1}{\left(1+x^{2}\right)^{n}} \mathrm{~d} x
$$

for $n \geqslant 1$.
(a) Use integration by parts to show that

$$
\begin{equation*}
I_{n}=\frac{1}{2^{n}}+2 n \int_{0}^{1} \frac{x^{2}}{\left(1+x^{2}\right)^{n+1}} \mathrm{~d} x \tag{3}
\end{equation*}
$$

(b) Find the values of A and B for which

$$
\begin{equation*}
\frac{A}{\left(1+x^{2}\right)^{n}}+\frac{B}{\left(1+x^{2}\right)^{n+1}} \equiv \frac{x^{2}}{\left(1+x^{2}\right)^{n+1}}, \tag{5}
\end{equation*}
$$

and hence show that

$$
I_{n+1}=\frac{1}{n \cdot 2^{n+1}}+\left(\frac{2 n-1}{2 n}\right) I_{n}
$$

(c) Hence obtain the exact value of

$$
\begin{equation*}
\int_{0}^{1} \frac{1}{\left(1+x^{2}\right)^{3}} \mathrm{~d} x \tag{3}
\end{equation*}
$$

