Dr Oliver Mathematics
 Further Mathematics
 Further Vectors
 Past Examination Questions

This booklet consists of 26 questions across a variety of examination topics.
The total number of marks available is 250 .

1. The points A, B, and C lie on the plane Π and, relative to a fixed origin O, they have position vectors

$$
\mathbf{a}=3 \mathbf{i}-\mathbf{j}+4 \mathbf{k}, \mathbf{b}=-\mathbf{i}+2 \mathbf{j}, \text { and } \mathbf{c}=5 \mathbf{i}-3 \mathbf{j}+7 \mathbf{k},
$$

respectively.
(a) Find $\overrightarrow{A B} \times \overrightarrow{A C}$.
(b) Find an equation of Π in the form $\mathbf{r} . \mathbf{n}=p$.

The point D has position vector $5 \mathbf{i}+2 \mathbf{j}+3 \mathbf{k}$.
(c) Calculate the volume of the tetrahedron $A B C D$.
2. (a) Explain why, for any two vectors \mathbf{a} and $\mathbf{a}, \mathbf{a} \cdot \mathbf{b} \times \mathbf{a}=0$.
(b) Given vectors \mathbf{a}, \mathbf{b}, and \mathbf{c} such that $\mathbf{a} \times \mathbf{b}=\mathbf{a} \times \mathbf{c}$, where $\mathbf{a} \neq \mathbf{0}$ and $\mathbf{b} \neq \mathbf{c}$, show that

$$
\mathbf{b}-\mathbf{c}=\lambda \mathbf{a},
$$

where λ is a scalar.
3. The line l_{1} has equation

$$
\mathbf{r}=\mathbf{i}+6 \mathbf{j}-\mathbf{k}+\lambda(2 \mathbf{i}+3 \mathbf{k})
$$

and the line l_{2} has equation

$$
\mathbf{r}=3 \mathbf{i}+p \mathbf{j}+\mu(\mathbf{i}-2 \mathbf{j}+\mathbf{k})
$$

where p is a constant. The plane Π_{1} contains l_{1} and l_{2}.
(a) Find a vector which is normal to Π_{1}.
(b) Show that an equation for Π_{1} is $6 x+y-4 z=16$.
(c) Find the value of p.

The plane Π_{2} has equation $\mathbf{r} .(\mathbf{i}+2 \mathbf{j}+\mathbf{k})=2$.
(d) Find an equation for the line of intersection of Π_{1} and Π_{2}, giving your answer in the form

$$
\begin{equation*}
(\mathbf{r}-\mathbf{a}) \times \mathbf{b}=\mathbf{0} \tag{5}
\end{equation*}
$$

4. The plane Π passes through the points

$$
P(-1,3,-2), Q(4,-1,-1), \text { and } R(3,0, c)
$$

where c is a constant.
(a) Find, in terms of $c, \overrightarrow{R P} \times \overrightarrow{R Q}$.

Given that $\overrightarrow{R P} \times \overrightarrow{R Q}=3 \mathbf{i}+d \mathbf{j}+\mathbf{k}$, where d is a constant,
(b) find the value of c and show that $d=4$,
(c) find an equation of Π in the form $\mathbf{r} . \mathbf{n}=p$, where p is a constant.

The point S has position vector $\mathbf{i}+5 \mathbf{j}+10 \mathbf{k}$. The point S^{\prime} is the image of S under reflection in Π.
(d) Find the position vector of S^{\prime}.
5. The points A, B, and C lie on the plane Π_{1} and, relative to a fixed origin O, they have position vectors

$$
\begin{equation*}
\mathbf{a}=\mathbf{i}+3 \mathbf{j}-\mathbf{k}, \mathbf{b}=3 \mathbf{i}+3 \mathbf{j}-4 \mathbf{k}, \text { and } \mathbf{c}=5 \mathbf{i}-2 \mathbf{j}-2 \mathbf{k} \tag{4}
\end{equation*}
$$

(a) Find $(\mathbf{b}-\mathbf{a}) \times(\mathbf{c}-\mathbf{a})$.
(b) Find an equation for Π_{1}, giving your answer in the form $\mathbf{r} . \boldsymbol{n}=p$.

The plane Π_{2} has cartesian equation $x+z=3$ and Π_{1} and Π_{2} intersect in the line l.
(c) Find an equation for l, giving your answer in the form $(\mathbf{r}-\mathbf{p}) \times \mathbf{q}=\mathbf{0}$.

The point P is the point on l that is the nearest to the origin O.
(d) Find the coordinates of P.
6. The points A, B, and C have position vectors, relative to a fixed origin O,

$$
\begin{aligned}
\mathbf{a} & =2 \mathbf{i}-\mathbf{j} \\
\mathbf{b} & =\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}, \text { and } \\
\mathbf{c} & =2 \mathbf{i}+3 \mathbf{j}+2 \mathbf{k}
\end{aligned}
$$

respectively. The plane Π passes through A, B, and C.
(a) Find $\overrightarrow{A B} \times \overrightarrow{A C}$.
(b) Show that a cartesian equation of Π is $3 x-y+2 z=7$.

The line l has equation

$$
(\mathbf{r}-5 \mathbf{i}-5 \mathbf{j}-3 \mathbf{k}) \times(2 \mathbf{i}-\mathbf{j}-2 \mathbf{k})=\mathbf{0}
$$

The line l and the plane Π intersect at the point T.
(c) Find the coordinates of T.
(d) Show that A, B, and T lie on the same straight line.
7. Figure 1 shows a pyramid $P Q R S T$ with base $P Q R S$.

Figure 1: a pyramid $P Q R S T$

The coordinates of P, Q, and R are $P(1,0,-1), Q(2,-1,1)$, and $R(3,-3,2)$. Find
(a) Find $\overrightarrow{P Q} \times \overrightarrow{P R}$.
(b) a vector equation for the plane containing the face $P Q R S$, giving your answer in the form $\mathbf{r} . \mathbf{n}=d$.

The plane Π contains the face $P S T$. The vector equation of Π is $\mathbf{r} .(\mathbf{i}-2 \mathbf{j}-5 \mathbf{k})=6$.
(c) Find cartesian equations of the line through P and S.
(d) Hence show that $P S$ is parallel to $Q R$.

Given that $P Q R S$ is a parallelogram and that T has coordinates $(5,2,-1)$,
(e) find the volume of the pyramid $P Q R S T$.
8. The points A, B, and C have position vectors \mathbf{a}, \mathbf{b}, and \mathbf{c} respectively, relative to a fixed origin O, as shown in Figure 2.

Figure 2: the points A, B, and C

It is given that

$$
\mathbf{a}=\mathbf{i}+\mathbf{j}, \mathbf{b}=3 \mathbf{i}-\mathbf{j}+\mathbf{k}, \text { and } \mathbf{c}=2 \mathbf{i}+\mathbf{j}-\mathbf{k} .
$$

Calculate
(a) $\mathbf{b} \times \mathbf{c}$,
(b) a. $(\mathbf{b} \times \mathbf{c})$,
(c) the area of triangle $O B C$,
(d) the volume of the tetrahedron $O A B C$.
9. The lines l_{1} and l_{2} have equations

$$
\mathbf{r}=\left(\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right)+\lambda\left(\begin{array}{c}
-1 \\
3 \\
4
\end{array}\right) \text { and } \mathbf{r}=\left(\begin{array}{c}
\alpha \\
-4 \\
0
\end{array}\right)+\mu\left(\begin{array}{l}
0 \\
3 \\
2
\end{array}\right)
$$

If the lines l_{1} and l_{2} interest,
(a) the value of α,
(b) an equation for the plane containing the lines l_{1} and l_{2}, giving your answer in the form $a x+b y+c z+d=0$, where a, b, c, and d are constants.

For other values of α, the lines l_{1} and l_{2} do not intersect and are skew lines. Given that $\alpha=2$,
(c) find the shortest distance between the lines l_{1} and l_{2}.
10. Given that

$$
\begin{equation*}
\mathbf{a}=\mathbf{i}+7 \mathbf{j}+9 \mathbf{k} \text { and } \mathbf{b}=-\mathbf{i}+3 \mathbf{j}+\mathbf{k}, \tag{2}
\end{equation*}
$$

(a) show that $\mathbf{a} \times \mathbf{b}=c(2 \mathbf{i}+\mathbf{j}-k \mathbf{k})$, and state the value of the constant c.

The plane Π_{1} passes through the point $(3,1,3)$ and the vector $\mathbf{a} \times \mathbf{b}$ is perpendicular to Π_{1}.
(b) Find a cartesian equation for the plane Π_{1}.

The line l_{1} has equation $\mathbf{r}=\mathbf{i}-2 \mathbf{k}+\lambda \mathbf{a}$.
(c) Show that the line l_{1} lies in the plane Π_{1}.

The line l_{2} has equation $\mathbf{r}=\mathbf{i}+\mathbf{j}+\mathbf{k}+\mu \mathbf{b}$. The line l_{2} lies in a plane Π_{2}, which is parallel to the plane Π_{1}.
(d) Find a cartesian equation of the plane Π_{2}.
(e) Find the distance between the planes Π_{1} and Π_{2}.
11. The plane Π has vector equation

$$
\mathbf{r}=3 \mathbf{i}+\mathbf{k}+\lambda(-4 \mathbf{i}+\mathbf{j})+\mu(6 \mathbf{i}-2 \mathbf{j}+\mathbf{k})
$$

(a) Find an equation of Π in the form $\mathbf{r} . \mathbf{n}=p$, where \mathbf{n} is a vector perpendicular to Π and p is a constant.

The point P has coordinates $(6,13,5)$. The line l passes through P and is perpendicular to Π. The line l intersects Π at the point N.
(b) Show that the coordinates of N are $(3,1,-1)$.

The point R lies on Π and has coordinates $(1,0,2)$.
(c) Find the perpendicular distance from N to the line $P R$. Give your answer to 3 significant figures.
12. The plane P has equation

$$
\mathbf{r}=\left(\begin{array}{l}
3 \tag{2}\\
1 \\
2
\end{array}\right)+\lambda\left(\begin{array}{c}
0 \\
2 \\
-1
\end{array}\right)+\mu\left(\begin{array}{l}
3 \\
2 \\
2
\end{array}\right)
$$

(a) Find a vector perpendicular to the plane P.

The line l passes through the point $A(1,3,3)$ and meets P at $(3,1,2)$. The acute angle between the plane P and the line l is α.
(b) Find α to the nearest degree.
(c) Find the perpendicular distance from A to the plane P.
13. The straight line l_{1} is mapped onto the straight line l_{2} by the transformation represented

$$
\left(\begin{array}{ccc}
2 & -1 & 1 \tag{5}\\
1 & 0 & -1 \\
3 & -2 & 1
\end{array}\right)
$$

The equation of l_{2} is $(\mathbf{r}-\mathbf{a}) \times \mathbf{b}=\mathbf{0}$, where $\mathbf{a}=4 \mathbf{i}+\mathbf{j}+7 \mathbf{k}$ and $\mathbf{b}=4 \mathbf{i}+\mathbf{j}+3 \mathbf{k}$.
Find a vector equation for the line l_{1}.
14. The position vectors of the points A, B, and C relative to an origin O are $\mathbf{i}-2 \mathbf{j}-2 \mathbf{k}$, $7 \mathbf{i}-3 \mathbf{k}$, and $4 \mathbf{i}+4 \mathbf{j}$. Find
(a) $\overrightarrow{A C} \times \overrightarrow{B C}$,
(b) the area of triangle $A B C$,
(c) an equation of the plane $A B C$ in the form $\mathbf{r} \cdot \mathbf{n}=p$.
15. The straight line l_{1} is mapped onto the straight line l_{2} by the transformation represented by the matrix \mathbf{M}, where

$$
\mathbf{M}=\left(\begin{array}{ccc}
2 & 1 & 0 \tag{5}\\
1 & 2 & 0 \\
-1 & 0 & 4
\end{array}\right)
$$

The equation of l_{1} is $(\mathbf{r}-\mathbf{a}) \times \mathbf{b}=\mathbf{0}$, where $\mathbf{a}=3 \mathbf{i}+2 \mathbf{j}-2 \mathbf{k}$ and $\mathbf{b}=\mathbf{i}-\mathbf{j}+2 \mathbf{k}$.
Find a vector equation for the line l_{2}.
16. The plane Π_{1} has vector equation

$$
\begin{equation*}
\mathbf{r} .(3 \mathbf{i}-4 \mathbf{j}+2 \mathbf{k})=5 . \tag{3}
\end{equation*}
$$

(a) Find the perpendicular distance from the point $(6,2,12)$ to the plane Π_{1}.

The plane Π_{2} has vector equation

$$
\mathbf{r}=\lambda(2 \mathbf{i}+\mathbf{j}+5 \mathbf{k})+\mu(\mathbf{i}-\mathbf{j}-2 \mathbf{k}),
$$

where λ and μ are scalar parameters.
(b) find the acute angle between Π_{1} and Π_{2} giving your answer to the nearest degree.
(c) Find an equation of the line of intersection of the two planes in the form $\mathbf{r} \times \mathbf{a}=\mathbf{b}$, where \mathbf{a} and \mathbf{b} are constant vectors.
17. Two skew lines l_{1} and l_{2} have equations

$$
\begin{array}{ll}
l_{1}: & \mathbf{r}=(\mathbf{i}-\mathbf{j}+\mathbf{k})+\lambda(4 \mathbf{i}+3 \mathbf{j}+2 \mathbf{k}) \\
l_{2}: & \mathbf{r}=(3 \mathbf{i}+7 \mathbf{j}+2 \mathbf{k})+\mu(-4 \mathbf{i}+6 \mathbf{j}+\mathbf{k}),
\end{array}
$$

respectively, where λ and μ are real parameters.
(a) Find a vector in the direction of the common perpendicular to l_{1} and l_{2}.
(b) Find the shortest distance between these two lines.
18. The plane Π_{1} has vector equation

$$
\mathbf{r}=\left(\begin{array}{c}
1 \tag{9}\\
-1 \\
2
\end{array}\right)+s\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+t\left(\begin{array}{c}
1 \\
2 \\
-2
\end{array}\right)
$$

where s and t are real parameters. The plane Π_{1} is transformed to the plane Π_{2} by the transformation represented by the matrix \mathbf{T}, where

$$
\mathbf{T}=\left(\begin{array}{ccc}
2 & 0 & 3 \\
0 & 2 & -1 \\
0 & 1 & 2
\end{array}\right)
$$

Find an equation of the plane Π_{2} in the form $\mathbf{r} . \mathbf{n}=p$.
19. The line l passes through the point $P(2,1,3)$ and is perpendicular to the plane Π whose vector equation is

$$
\mathbf{r} .(\mathbf{i}-2 \mathbf{j}-\mathbf{k})=3 .
$$

Find
(a) a vector equation of the line l,
(b) the position vector of the point where l meets Π.
(c) Hence find the perpendicular distance of P from Π.
20.

$$
\mathbf{M}=\left(\begin{array}{lll}
1 & 0 & 2 \tag{4}\\
0 & 4 & 1 \\
0 & 5 & 0
\end{array}\right)
$$

The transformation $M: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is represented by the matrix M. Find a cartesian equation of the image, under this transformation, of the line

$$
x=\frac{y}{2}=\frac{z}{-1} .
$$

21. The position vectors of the points A, B, and C from a fixed origin O are

$$
\mathbf{a}=\mathbf{i}-\mathbf{j}, \mathbf{b}=\mathbf{i}+\mathbf{j}+\mathbf{k}, \text { and } \mathbf{c}=2 \mathbf{j}+\mathbf{k},
$$

respectively.
(a) Using vector products, find the area of the triangle $A B C$.
(b) Show that

$$
\begin{equation*}
\frac{1}{6} \mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=0 . \tag{4}
\end{equation*}
$$

(c) Hence or otherwise, state what can be deduced about the vectors \mathbf{a}, \mathbf{b}, and \mathbf{c}.
22. The plane Π_{1} has vector equation

$$
\mathbf{r} .(2 \mathbf{i}+\mathbf{j}+3 \mathbf{k})=5 .
$$

The plane Π_{2} has vector equation

$$
\begin{equation*}
\mathbf{r} .(-\mathbf{i}+2 \mathbf{j}+4 \mathbf{k})=7 . \tag{6}
\end{equation*}
$$

(a) Find a vector equation for the line of intersection of Π_{1} and Π_{2}, giving your answer in the form $\mathbf{r}=\mathbf{a}+\lambda \mathbf{b}$ where \mathbf{a} and \mathbf{b} are constant vectors and λ is a scalar parameter.

The plane Π_{3} has cartesian equation $x-y+2 z=31$.
(b) Using your answer to part (a), or otherwise, find the coordinates of the point of intersection of the planes Π_{1}, Π_{2}, and Π_{3}.
23. The points A, B, and C have position vectors

$$
\left(\begin{array}{l}
1 \\
3 \\
2
\end{array}\right),\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right), \text { and }\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right)
$$

respectively.
(a) Find a vector equation of the straight line $A B$.
(b) Find a cartesian form of the equation of the straight line $A B$.

The plane Π contains the points A, B, and C.
(c) Find a vector equation of Π in the form $\mathbf{r} \cdot \mathbf{n}=p$.
(d) Find the perpendicular distance from the origin to Π.
24. The plane Π_{1} has equation

$$
x-5 y-2 z=3
$$

The plane Π_{2} has equation

$$
\mathbf{r}=\mathbf{i}+2 \mathbf{j}+\mathbf{k}+\lambda(\mathbf{i}+4 \mathbf{j}+3 \mathbf{k})+\mu(2 \mathbf{i}-\mathbf{j}+\mathbf{k})
$$

where λ and μ are scalar parameters.
(a) Show that Π_{1} is perpendicular to Π_{2}.
(b) Find a cartesian equation for Π_{2}.
(c) Find an equation for the line of intersection of Π_{1} and Π_{2} giving your answer in the form $(\mathbf{r}-\mathbf{a}) \times \mathbf{b}=\mathbf{0}$, where \mathbf{a} and \mathbf{b} are constant vectors to be found.
25. The plane Π_{1} has equation

$$
x-2 y-3 z=5
$$

and the plane Π_{2} has equation

$$
\begin{equation*}
6 x+y-4 z=7 \tag{3}
\end{equation*}
$$

(a) Find, to the nearest degree, the acute angle between Π_{1} and Π_{2}.

The point P has coordinates $(2,3,-1)$. The line l is perpendicular to Π_{1} and passes through the point P. The line l intersects Π_{2} at the point Q.
(b) Find the coordinates of Q.

The plane Π_{3} passes through the point Q and is perpendicular to Π_{1} and Π_{2}.
(c) Find an equation of the plane Π_{3} in the form $\mathbf{r} \cdot \mathbf{n}=p$.
26. The straight line l_{2} is mapped onto the straight line l_{1} by the transformation represented by the matrix

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \tag{6}\\
-2 & -1 & -1 \\
-6 & -1 & -2
\end{array}\right)
$$

Given that l_{2} has cartesian equation

$$
\frac{x-1}{5}=\frac{y+2}{2}=\frac{z-3}{1}
$$

find a cartesian equation of the line l_{1}.

