Dr Oliver Mathematics Proof by Contradiction

In this note, we will examine proof by contradiction.

To prove that a statement, P, is true, we begin by assuming that P is false and show that it leads to a contradiction.

Example 1

 $\sqrt{2}$ is irrational.

Solution Suppose $\sqrt{2}$ is rational. Then

$$\sqrt{2} = \frac{a}{b}$$

for some $a \in \mathbb{N}$ and $b \in \mathbb{N}$ in simplest form. Now,

$$\sqrt{2} = \frac{a}{b} \Rightarrow a = \sqrt{2}b$$
$$\Rightarrow a^2 = 2b^2.$$

Now, $2b^2$ is even so a^2 is even. And, if a^2 is even, then a is even. Next, a = 2c for some integer c. Now,

$$a^{2} = 2b^{2} \Rightarrow (2c)^{2} = 2b^{2}$$
$$\Rightarrow 4c^{2} = 2b^{2}$$
$$\Rightarrow 2c^{2} = b^{2}.$$

Now, $2c^2$ is even so b^2 is even.

And, if b^2 is even, then b is even – contradiction.

Therefore, $\sqrt{2}$ is irrational.

Example 2

There are infinitely many prime numbers.

Solution Let us assume there *is* a greatest prime number. Let $p_1, p_2, p_3, \ldots, p_n$ be the list of prime numbers. Now, consider

$$N = p_1 p_2 p_3 \dots p_n + 1.$$

Is this a prime?

 p_1 ? No, because we are left with remainder 1.

 p_2 ? No, because we are left with remainder 1.

 p_n ? No, because we are left with remainder 1.

So, if you divide N by one of the primes on our list, you get a remainder of 1. So N is not divisible by any of the primes $p_1, p_2, p_3, \ldots, p_n$.

However, by the Fundamental Theorem of Arithmetic, N must have a prime factor (which might be either itself or some smaller number). This contradicts our assumption that $p_1, p_2, p_3, \ldots, p_n$ was a list of all the prime numbers.

Therefore, there are infinitely many prime numbers.

Example 3

There is no greatest even integer.

Solution Suppose there is a greatest even integer, N. For every even integer $n, N \ge n$. Now, consider

$$M = N + 2.$$

Then, M is an even integer because it is a sum of even integers. Also, M > N since M = N + 2. Therefore, M is an integer that is greater than the greatest integer – contradiction.

Therefore, there is no greatest even integer. \blacksquare

Here are some examples for you to try.

- 1. $\sqrt{3}$ is irrational.
- 2. $\sqrt{5}$ is irrational.
- 3. $\sqrt{6}$ is irrational.
- 4. $\sqrt[3]{2}$ is irrational.
- 5. Prove that $\log_5 10$ is irrational.
- 6. There exist no integers a and b for which 18a + 6b = 1.
- 7. If $|x| < \epsilon$ for every real number $\epsilon > 0$, then x = 0.
- 8. $\sqrt{2} + \sqrt{6} < \sqrt{15}$.
- 9. If n is an integer and $n^3 + 5$ is odd, then n is even.
- 10. For all integers n, if n^2 is odd, then n is odd.
- 11. The sum of any rational number and any irrational number is irrational.
- 12. There do not exist two prime numbers p and q for which p q = 97.