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Proof by Contradiction

In this note, we will examine proof by contradiction.

To prove that a statement, P , is true, we begin by assuming that P is false and show that
it leads to a contradiction.

Example 1?
2 is irrational.

Solution Suppose
?

2 is rational. Then

?
2 “

a

b

for some a P N and b P N in simplest form. Now,

?
2 “

a

b
ñ a “

?
2b

ñ a2 “ 2b2.

Now, 2b2 is even so a2 is even.
And, if a2 is even, then a is even.
Next, a “ 2c for some integer c.
Now,

a2 “ 2b2 ñ p2cq2 “ 2b2

ñ 4c2 “ 2b2

ñ 2c2 “ b2.

Now, 2c2 is even so b2 is even.
And, if b2 is even, then b is even – contradiction.

Therefore,
?

2 is irrational. �

Example 2
There are infinitely many prime numbers.

Solution Let us assume there is a greatest prime number.
Let p1, p2, p3, . . . , pn be the list of prime numbers.
Now, consider

N “ p1p2p3 . . . pn ` 1.

Is this a prime?
p1? No, because we are left with remainder 1.
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p2? No, because we are left with remainder 1.
...
pn? No, because we are left with remainder 1.
So, if you divide N by one of the primes on our list, you get a remainder of 1. So N is not
divisible by any of the primes p1, p2, p3, . . . , pn.

However, by the Fundamental Theorem of Arithmetic, N must have a prime factor (which
might be either itself or some smaller number). This contradicts our assumption that p1, p2,
p3, . . . , pn was a list of all the prime numbers.

Therefore, there are infinitely many prime numbers. �

Example 3
There is no greatest even integer.

Solution Suppose there is a greatest even integer, N . For every even integer n, N ě n.
Now, consider

M “ N ` 2.

Then, M is an even integer because it is a sum of even integers. Also, M ą N since M “

N ` 2. Therefore, M is an integer that is greater than the greatest integer – contradiction.

Therefore, there is no greatest even integer. �

Here are some examples for you to try.

1.
?

3 is irrational.

2.
?

5 is irrational.

3.
?

6 is irrational.

4. 3
?

2 is irrational.

5. Prove that log5 10 is irrational.

6. There exist no integers a and b for which 18a` 6b “ 1.

7. If |x| ă ε for every real number ε ą 0, then x “ 0.

8.
?

2`
?

6 ă
?

15.

9. If n is an integer and n3 ` 5 is odd, then n is even.

10. For all integers n, if n2 is odd, then n is odd.

11. The sum of any rational number and any irrational number is irrational.

12. There do not exist two prime numbers p and q for which p´ q “ 97.
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