Dr Oliver Mathematics Proof by Contradiction

In this note, we will examine proof by contradiction.
To prove that a statement, P, is true, we begin by assuming that P is false and show that it leads to a contradiction.

Example 1

$\sqrt{2}$ is irrational.
Solution Suppose $\sqrt{2}$ is rational. Then

$$
\sqrt{2}=\frac{a}{b}
$$

for some $a \in \mathbb{N}$ and $b \in \mathbb{N}$ in simplest form. Now,

$$
\begin{aligned}
\sqrt{2}=\frac{a}{b} & \Rightarrow a=\sqrt{2} b \\
& \Rightarrow a^{2}=2 b^{2}
\end{aligned}
$$

Now, $2 b^{2}$ is even so a^{2} is even.
And, if a^{2} is even, then a is even.
Next, $a=2 c$ for some integer c.
Now,

$$
\begin{aligned}
a^{2}=2 b^{2} & \Rightarrow(2 c)^{2}=2 b^{2} \\
& \Rightarrow 4 c^{2}=2 b^{2} \\
& \Rightarrow 2 c^{2}=b^{2} .
\end{aligned}
$$

Now, $2 c^{2}$ is even so b^{2} is even.
And, if b^{2} is even, then b is even - contradiction.
Therefore, $\sqrt{2}$ is irrational.

Example 2

There are infinitely many prime numbers.
Solution Let us assume there is a greatest prime number.
Let $p_{1}, p_{2}, p_{3}, \ldots, p_{n}$ be the list of prime numbers.
Now, consider

$$
N=p_{1} p_{2} p_{3} \ldots p_{n}+1
$$

Is this a prime?
p_{1} ? No, because we are left with remainder 1.
p_{2} ? No, because we are left with remainder 1.
\vdots
p_{n} ? No, because we are left with remainder 1.
So, if you divide N by one of the primes on our list, you get a remainder of 1 . So N is not divisible by any of the primes $p_{1}, p_{2}, p_{3}, \ldots, p_{n}$.

However, by the Fundamental Theorem of Arithmetic, N must have a prime factor (which might be either itself or some smaller number). This contradicts our assumption that p_{1}, p_{2}, p_{3}, \ldots, p_{n} was a list of all the prime numbers.

Therefore, there are infinitely many prime numbers.

Example 3

There is no greatest even integer.
Solution Suppose there is a greatest even integer, N. For every even integer $n, N \geqslant n$. Now, consider

$$
M=N+2
$$

Then, M is an even integer because it is a sum of even integers. Also, $M>N$ since $M=$ $N+2$. Therefore, M is an integer that is greater than the greatest integer - contradiction.

Therefore, there is no greatest even integer.
Here are some examples for you to try.

1. $\sqrt{3}$ is irrational.
2. $\sqrt{5}$ is irrational.
3. $\sqrt{6}$ is irrational.
4. $\sqrt[3]{2}$ is irrational.
5. Prove that $\log _{5} 10$ is irrational.
6. There exist no integers a and b for which $18 a+6 b=1$.
7. If $|x|<\epsilon$ for every real number $\epsilon>0$, then $x=0$.
8. $\sqrt{2}+\sqrt{6}<\sqrt{15}$.
9. If n is an integer and $n^{3}+5$ is odd, then n is even.
10. For all integers n, if n^{2} is odd, then n is odd.
11. The sum of any rational number and any irrational number is irrational.
12. There do not exist two prime numbers p and q for which $p-q=9$.
