Dr Oliver Mathematics Mathematics: Higher 2009 Paper 1: Non-Calculator 1 hour 30 minutes

The total number of marks available is 70 .
You must write down all the stages in your working.

Section A

1. A sequence is defined by

$$
\begin{equation*}
u_{n+1}=3 u_{n}+4 \tag{2}
\end{equation*}
$$

with $u_{1}=2$.
What is the value of u_{3} ?
A. 34
B. 21
C. 18
D. 13

Solution	
A	
	$u_{2}=3 u_{1}+4=3 \times 2+4=10$ $u_{3}=3 u_{2}+4=3 \times 10+4=34$.

2. A circle has equation

$$
\begin{equation*}
x^{2}+y^{2}+8 x+6 y-75=0 . \tag{2}
\end{equation*}
$$

What is the radius of this circle?
A. 5
B. 10
C. $\sqrt{75}$
D. $\sqrt{175}$

Solution

B

$$
\begin{aligned}
x^{2}+y^{2}+8 x+6 y-75=0 & \Rightarrow x^{2}+8 x+y^{2}+6 y=75 \\
& \Rightarrow\left(x^{2}+8 x+16\right)+\left(y^{2}+6 y+9\right)=75+16+9 \\
& \Rightarrow(x+4)^{2}+(y+3)^{2}=100 \\
& \Rightarrow(x+4)^{2}+(y+3)^{2}=10^{2} .
\end{aligned}
$$

3. Triangle $P Q R$ has vertices at $P(-3,-2), Q(-1,4)$, and $R(3,6)$.
$P S$ is a median.
What is the gradient of $P S$?
A. -2
B. $-\frac{7}{4}$
C. 1
D. $\frac{7}{4}$

Solution

D
$S(1,5)$ and the gradient of $P S$ is

$$
\frac{5-(-2)}{1-(-3)}=\frac{7}{4}
$$

4. A curve has equation

$$
\begin{equation*}
y=5 x^{3}-12 x \tag{2}
\end{equation*}
$$

What is the gradient of the tangent at the point $(1,-7)$?
A. -7
B. -5
C. 3
D. 5

Solution

C

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=15 x^{2}-12
$$

and

$$
x=1 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 .
$$

5. Here are two statements about the points $S(2,3)$ and $T(5,-1)$:
(1) The length of $S T=5$ units;
(2) The gradient of $S T=\frac{4}{3}$.

Which of the following is true?
A. Neither statement is correct.
B. Only statement (1) is correct.
C. Only statement (2) is correct.
D. Both statements are correct.

Solution

B

$$
S T=\sqrt{3^{2}+4^{2}}=5
$$

and

$$
\text { gradient }=\frac{3-(-1)}{2-5}=-\frac{4}{3} .
$$

6. A sequence is generated by the recurrence relation

$$
\begin{equation*}
u_{n+1}=0.7 u_{n}+10 \tag{2}
\end{equation*}
$$

What is the limit of this sequence as $n \rightarrow \infty$?
A. $\frac{100}{3}$
B. $\frac{100}{7}$
C. $\frac{17}{100}$
D. $\frac{3}{10}$

Solution

A
Let u be the number that they are converging to. Now,

$$
\begin{aligned}
u=0.7 u+10 & \Rightarrow 0.3 u=10 \\
& \Rightarrow u=\frac{100}{3}
\end{aligned}
$$

7. If the exact value of $\cos x$ is $\frac{1}{\sqrt{5}}$, find the exact value of $\cos 2 x$.
A. $-\frac{3}{5}$
B. $-\frac{2}{\sqrt{5}}$
C. $-\frac{2}{\sqrt{5}}$
D. $\frac{3}{5}$

Solution

A

$$
\begin{aligned}
\cos 2 x & =2 \cos ^{2} x-1 \\
& =2\left(\frac{1}{\sqrt{5}}\right)^{2} x-1 \\
& =\frac{2}{5}-1 \\
& =-\frac{3}{5} .
\end{aligned}
$$

8. What is the derivative of

$$
\frac{1}{4 x^{3}}, x \neq 0 ?
$$

A. $\frac{1}{12 x^{2}}$
B. $-\frac{1}{12 x^{2}}$
C. $\frac{4}{x^{4}}$
D. $-\frac{3}{4 x^{4}}$

Solution

D

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{1}{4 x^{3}}\right) & =\frac{1}{4} \frac{\mathrm{~d}}{\mathrm{~d} x}\left(x^{-3}\right) \\
& =\frac{1}{4} \times\left(-3 x^{-4}\right) \\
& =-\frac{3}{4 x^{4}} .
\end{aligned}
$$

9. The line with equation

$$
\begin{equation*}
y=2 x \tag{2}
\end{equation*}
$$

intersects the circle with equation

$$
x^{2}+y^{2}=5
$$

at the points J and K.

What are the x-coordinates of J and K ?
A. $x_{J}=1, x_{K}=-1$
B. $x_{J}=2, x_{K}=-2$
C. $x_{J}=1, x_{K}=-2$
D. $x_{J}=-1, x_{K}=2$

Solution	
A	
$x^{2}+y^{2}=5$	$\Rightarrow x^{2}+(2 x)^{2}=5$
	$\Rightarrow 5 x^{2}=5$
	$\Rightarrow x^{2}=1$
	$\Rightarrow x= \pm 1$

10. Which of the following graphs has equation

$$
y=\log _{5}(x-2) ?
$$

A

B

C

D

Solution

11. How many solutions does the equation

$$
(4 \sin x-\sqrt{5})(\sin x+1)=0
$$

have in the interval $0 \leqslant x<2 \pi$?
A. 4
B. 3
C. 2
D. 1

Solution

B

$$
(4 \sin x-\sqrt{5})(\sin x+1)=0 \Rightarrow \sin x=\frac{\sqrt{5}}{4} \text { or } \sin x=-1
$$

and the are 3 solutions (2 solutions for $\sin x=\frac{\sqrt{5}}{4}$ and one for $\sin x=-1$).
12. A function f is given by

$$
\begin{equation*}
\mathrm{f}(x)=2 x^{2}-x-9 \tag{2}
\end{equation*}
$$

Which of the following describes the nature of the roots of $\mathrm{f}(x)=0$?
A. No real roots
B. Equal roots
C. Real distinct roots
D. Rational distinct roots
\square
13. k and a are given by

$$
\begin{align*}
& k \sin a^{\circ}=1 \tag{2}\\
& k \cos a^{\circ}=\sqrt{3}
\end{align*}
$$

where $k>0$ and $0 \leqslant a<90$.
What are the values of k and a ?
A. $k=2$ and $a=60$
B. $k=2$ and $a=30$
C. $k=\sqrt{10}$ and $a=60$
D. $k=\sqrt{10}$ and $a=30$

Solution

B

$$
k=\sqrt{1^{2}+(\sqrt{3})^{2}}=2
$$

and

$$
a=\tan ^{-1} \frac{1}{\sqrt{3}}=30
$$

14. If

$$
f(x)=2 \sin \left(3 x-\frac{\pi}{2}\right)+5
$$

what is the range of values of $\mathrm{f}(x)$?
A. $-1 \leqslant \mathrm{f}(x) \leqslant 11$
B. $2 \leqslant \mathrm{f}(x) \leqslant 8$
C. $3 \leqslant \mathrm{f}(x) \leqslant 7$
D. $-3 \leqslant \mathrm{f}(x) \leqslant 7$

Solution

C
The minimum is

$$
2 \times(-1)+5=3
$$

and the maximum is

$$
2 \times 1+5=7
$$

15. The line $G H$ makes an angle of $\frac{\pi}{6}$ radians with the y-axis, as shown in the diagram.

What is the gradient of $G H$?
A. $\sqrt{3}$
B. $\frac{1}{2}$
C. $\frac{1}{\sqrt{2}}$
D. $\frac{\sqrt{3}}{2}$

Solution

A

$$
\pi-\frac{\pi}{2}-\frac{\pi}{6}=\frac{\pi}{3}
$$

and

$$
\tan ^{-1} \frac{\pi}{3}=\sqrt{3}
$$

16. The graph of

$$
\begin{equation*}
y=4 x^{3}-9 x^{2} \tag{2}
\end{equation*}
$$

is shown in the diagram.

Which of the following gives the area of the shaded section?
A. $\left[x^{4}-3 x^{3}\right]_{x=-5}^{0}$
B. $-\left[x^{4}-3 x^{3}\right]_{x=0}^{1}$
C. $\left[12 x^{2}-18 x\right]_{x=-5}^{0}$
D. $-\left[12 x^{2}-18 x\right]_{x=0}^{1}$

Solution

B

$$
\int_{0}^{1}\left(4 x^{3}-9 x^{2}\right) \mathrm{d} x=\left[x^{4}-3 x^{3}\right]_{x=0}^{1}
$$

and we want to take it away (why?)
17. The vector \mathbf{u} has components

Which of the following is a unit vector parallel to \mathbf{u} ?
A. $-\frac{3}{5} \mathbf{i}+\frac{4}{5} \mathbf{k}$
B. $-3 \mathbf{i}+4 \mathbf{k}$
C. $-\frac{3}{\sqrt{7}} \mathbf{i}+\frac{4}{\sqrt{7}} \mathbf{k}$
D. $-\frac{1}{3} \mathbf{i}+\frac{1}{4} \mathbf{k}$

$$
\left(\begin{array}{c}
-3 \tag{2}\\
0 \\
4
\end{array}\right)
$$

Solution

A

$$
|\mathbf{u}|=\sqrt{3^{2}+0+4^{2}}=5
$$

18. Given that

$$
\begin{equation*}
\mathrm{f}(x)=\left(4-3 x^{2}\right)^{-\frac{1}{2}} \tag{2}
\end{equation*}
$$

on a suitable domain, find $\mathrm{f}^{\prime}(x)$.
A. $-3 x\left(4-3 x^{2}\right)^{-\frac{1}{2}}$
B. $-\frac{1}{2}\left(4-3 x^{2}\right)^{-\frac{3}{2}}$
C. $2\left(4-3 x^{3}\right)^{\frac{1}{2}}$
D. $3 x\left(4-3 x^{2}\right)^{-\frac{3}{2}}$

Solution

D

$$
\begin{aligned}
\mathrm{f}^{\prime}(x) & =-\frac{1}{2}\left(4-3 x^{2}\right)^{-\frac{3}{2}} \times(-6 x) \\
& =3 x\left(4-3 x^{2}\right)^{-\frac{3}{2}}
\end{aligned}
$$

19. For what values of x is

$$
\begin{equation*}
6+x-x^{2}<0 ? \tag{2}
\end{equation*}
$$

A. $x>3$ only
B. $x<-2$ only
C. $x<-2$ or $x>3$
D. $-3<x<2$

Solution

C

$$
\begin{aligned}
6+x-x^{2}=0 & \Rightarrow(2-x)(3+x)=0 \\
& \Rightarrow x=-3 \text { or } x=2
\end{aligned}
$$

and we want the x-values when it is negative.
20.

$$
\begin{equation*}
A=2 \pi r^{2}+6 \pi r \tag{2}
\end{equation*}
$$

What is the rate of change of A with respect to r when $r=2$?
A. 10π
B. 12π
C. 14π
D. 20π

Solution

C

$$
\left.\frac{\mathrm{d} A}{\mathrm{~d} r}\right|_{r=2}=4 \pi r+\left.6 \pi\right|_{r=2}=14 \pi
$$

Section B

21. Triangle $P Q R$ has vertex P on the x-axis, as shown in the diagram.

Q and R are the points $(4,6)$ and $(8,-2)$ respectively.
The equation of $P Q$ is

$$
\begin{equation*}
6 x-7 y+18=0 \tag{1}
\end{equation*}
$$

(a) State the coordinates of P.

Solution

$$
\begin{aligned}
y=0 & \Rightarrow 6 x+18=0 \\
& \Rightarrow 6 x=-18 \\
& \Rightarrow x=-3
\end{aligned}
$$

hence, $\underline{\underline{P(-3,0)}}$.
(b) Find the equation of the altitude of the triangle from P.

Solution

$$
\begin{aligned}
m_{Q R} & =\frac{6-(-2)}{4-8} \\
& =\frac{8}{-4} \\
& =-2
\end{aligned}
$$

and the gradient of $P T$ is $\frac{1}{2}$. Finally, the equation is

$$
y-0=\frac{1}{2}(x+3) \Rightarrow y=\frac{1}{2} x+\frac{3}{2} .
$$

The altitude from P meets the line $Q R$ at T.
(c) Find the coordinates of T.

Solution

The equation of $Q R$ is

$$
y-6=-2(x-4) \Rightarrow y=-2 x+14
$$

and now intersect:

$$
\begin{aligned}
-2 x+14=\frac{1}{2} x+\frac{3}{2} & \Rightarrow \frac{5}{2} x=\frac{25}{2} \\
& \Rightarrow x=5 \\
& \Rightarrow y=4 ;
\end{aligned}
$$

hence, $\underline{\underline{T(5,4)}}$.
22. D, E, and F have coordinates $(10,-8,-15),(1,-2,-3)$, and $(-2,0,1)$. respectively.
(a) (i) Show that D, E, and F are collinear.

Solution

$$
\overrightarrow{D E}=\left(\begin{array}{c}
9 \\
-6 \\
-12
\end{array}\right)
$$

and

$$
\begin{aligned}
\overrightarrow{D F} & =\left(\begin{array}{c}
12 \\
-8 \\
-16
\end{array}\right) \\
& =\frac{4}{3}\left(\begin{array}{c}
9 \\
-6 \\
-12
\end{array}\right) \\
& =\frac{4}{3} \overrightarrow{D E} ;
\end{aligned}
$$

hence, $\underline{\underline{D, E} \text {, and } F \text { are collinear. }}$
(ii) Find the ratio in which E divides $D F$.

Solution

3:1.
G has coordinates $(k, 1,0)$.
(b) Given that $D E$ is perpendicular to $G E$, find the value of k.

Solution

Given that $D E$ is perpendicular to $G E$,

$$
\begin{aligned}
\left(\begin{array}{c}
9 \\
-6 \\
-12
\end{array}\right) \cdot\left(\begin{array}{c}
k-1 \\
3 \\
3
\end{array}\right)=0 & \Rightarrow 9(k-1)-18-36=0 \\
& \Rightarrow 9(k-1)=54 \\
& \Rightarrow k-1=6 \\
& \Rightarrow \underline{k=7} .
\end{aligned}
$$

23. The diagram shows a sketch of the function $y=\mathrm{f}(x)$.

(a) Copy the diagram and on it sketch the graph of $y=\mathrm{f}(2 x)$.

Solution

E.g., it goes through $(-2,8),(0,0)$, and $(1,8)$.
(b) On a separate diagram, sketch the graph of $y=1-\mathrm{f}(2 x)$.

Solution

E.g., it goes through $(-2,-7),(0,1)$, and $(1,-7)$.
24. (a) Using the fact that

$$
\begin{equation*}
\frac{7 \pi}{12}=\frac{\pi}{3}+\frac{\pi}{4} \tag{3}
\end{equation*}
$$

find the exact value of $\sin \left(\frac{7 \pi}{12}\right)$.

Solution

$$
\begin{aligned}
\sin \left(\frac{7 \pi}{12}\right) & =\sin \left(\frac{\pi}{3}+\frac{\pi}{4}\right) \\
& =\sin \left(\frac{\pi}{3}\right) \cos \left(\frac{\pi}{4}\right)+\sin \left(\frac{\pi}{4}\right) \cos \left(\frac{\pi}{3}\right) \\
& =\left(\frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2}\right)+\left(\frac{\sqrt{2}}{2} \times \frac{1}{2}\right) \\
& =\underline{\overline{\sqrt{6}+\sqrt{2}}} 4
\end{aligned}
$$

(b) Show that

$$
\begin{equation*}
\sin (A+B)+\sin (A-B)=2 \sin A \cos B \tag{2}
\end{equation*}
$$

Solution

$$
\begin{aligned}
\sin (A+B)+\sin (A-B)= & (\sin A \cos B+\sin B \cos A) \\
& +(\sin A \cos B-\sin B \cos A) \\
= & \underline{\underline{2 \sin A \cos B}},
\end{aligned}
$$

as required.
(c) (i) Express $\frac{\pi}{12}$ in terms of $\frac{\pi}{3}$ and $\frac{\pi}{4}$.

Solution

$$
\frac{\pi}{12}=\underline{\underline{\frac{\pi}{3}}-\frac{\pi}{4}} .
$$

(ii) Hence or otherwise find the exact value of

$$
\sin \left(\frac{7 \pi}{12}\right)+\sin \left(\frac{\pi}{12}\right)
$$

Solution

$$
\begin{aligned}
\sin \left(\frac{7 \pi}{12}\right)+\sin \left(\frac{\pi}{12}\right) & =2 \sin \left(\frac{\pi}{3}\right) \cos \left(\frac{\pi}{4}\right) \\
& =2 \times \frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2} \\
& =\underline{\underline{\frac{\sqrt{6}}{2}}} .
\end{aligned}
$$

