Dr Oliver Mathematics GCSE Mathematics 2023 June Paper 1H: Non-Calculator 1 hour 30 minutes

The total number of marks available is 80 .
You must write down all the stages in your working.

1. Work out

$$
\begin{equation*}
8.46 \div 0.15 \tag{3}
\end{equation*}
$$

2. Work out

$$
\begin{equation*}
7 \frac{3}{8}-2 \frac{1}{2} \tag{3}
\end{equation*}
$$

Give your answer as a mixed number.
3. A cube has a total surface area of $150 \mathrm{~cm}^{2}$.

Work out the volume of the cube.
4. The table shows information about the daily rainfall in a town for 60 days.

Rainfall $(R \mathrm{~mm})$	Frequency
$0 \leqslant R<5$	8
$5 \leqslant R<10$	24
$10 \leqslant R<15$	13
$15 \leqslant R<20$	11
$20 \leqslant R<25$	4

Draw a frequency polygon for this information.

5. $\bullet \mathscr{E}=\{1,2,3,4,5,6,7,8,9,10\}$.

- $A=\{$ odd numbers $\}$.
- $B=$ \{square numbers $\}$.
(a) Complete the Venn diagram for this information.

A number is chosen at random from the universal set \mathscr{E}.
(b) Find the probability that this number is in the set B^{\prime}.
6. The scatter graph shows information about the ages and weights of some babies.

(a) Describe the relationship between the age and the weight of the babies.

Another baby has a weight of 5.8 kg .
(b) Using the scatter graph, find an estimate for the age of this baby.
7. The price of a holiday increases by 20%.

This 20% increase adds $£ 240$ to the price of the holiday.
Work out the price of the holiday before the increase.
8. The diagram shows a solid cylinder on a horizontal floor.

$$
\text { pressure }=\frac{\text { force }}{\text { area }}
$$

The cylinder has a

- volume of $1200 \mathrm{~cm}^{3}$ and
- height of 40 cm .

The cylinder exerts a force of 90 newtons on the floor.
Work out the pressure on the floor due to the cylinder.
9. Use these graphs to solve the simultaneous equations

$$
\begin{aligned}
2-2 y & =x \\
2 y & =3 x-22 .
\end{aligned}
$$

10. Here is a pentagon

Angle $A E D=4 \times$ angle $A B C$.
Work out the size of angle $A E D$.
You must show all your working.
11. Write
in the form

$$
\begin{equation*}
\frac{\left(6 x^{5} y^{3}\right)^{2}}{3 x^{2} y^{7} \times 4 x y^{-3}} \tag{3}
\end{equation*}
$$

$$
a x^{b} y^{c},
$$

where a, b, and c are integers.
12. Martha plays a game twice.

The probability tree diagram shows the probabilities that Martha will win or lose each game.

Zr Oliver

1st game
2nd game

Find the probability that Martha will lose at least one game.
13. y is directly proportional to x.
$y=24$ when $x=1.5$.
Work out the value of y when $x=5$.
14. (a) Write $\frac{1}{16}$ in the form 4^{n} where n is an integer.
(b) Work out the value of

$$
\begin{equation*}
8^{\frac{5}{3}}-9^{\frac{3}{2}} \tag{1}
\end{equation*}
$$

15. The equation of line L_{1} is $y=2 x-5$.

The equation of line L_{2} is $6 y+k x-12=0$.
L_{1} is perpendicular to L_{2}.
Find the value of k.
You must show all your working.
16. Here is a sphere.

$$
\text { Surface area of sphere }=4 \pi r^{2}
$$

$\frac{3}{8}$ of the surface area of this sphere is $75 \pi \mathrm{~cm}^{2}$.
Find the diameter of the sphere.
Give your answer in the form $a \sqrt{b}$, where a is an integer and b is a prime number.
17. Make x the subject of the formula

$$
\begin{equation*}
y=\frac{4(2 x-7)}{5 x+3} \tag{4}
\end{equation*}
$$

18. 7 kg of carrots and 5 kg of tomatoes cost a total of 480 p .

Cost of 1 kg of carrots : cost of 1 kg of tomatoes $=5: 9$.
Work out the cost of 1 kg of carrots and the cost of 1 kg of tomatoes.
19. The menu in a restaurant has starters, main courses, and desserts.

- There are 5 starters.
- There are 12 main courses.
- There are x desserts.

There are 420 different ways to choose one starter, one main course, and one dessert.
Work out the value of x.
20. For $x \geqslant 0$, the functions f and g are such that

$$
\begin{equation*}
\mathrm{f}(x)=3 x+4 \text { and } \mathrm{g}(x)=\frac{\sqrt{x}+2}{5} \tag{2}
\end{equation*}
$$

(a) Find $\mathrm{g}^{-1}(x)$.
(b) Solve
21. A, B, and D are points on a circle with centre O.
$C D E$ is the tangent to the circle at D.

Work out the size of angle $A D C$.
Write down any circle theorems you use.
22. $A B C D E F G H$ is a cuboid.

$A F=6.8 \mathrm{~cm}$.
$F C=13.6 \mathrm{~cm}$.

Work out the size of the angle between $F C$ and the plane $A B C D$.
23. Write
in the form

$$
\frac{3 \sqrt{3}}{4-\sqrt{3}}-\frac{2}{\sqrt{3}}
$$

$$
\frac{a \sqrt{3}+b}{c}
$$

where a, b, and c are integers.
24. Find the set of possible values of x for which

$$
\begin{equation*}
4 x^{2}-25<0 \text { and } 12-5 x-3 x^{2}>0 \tag{5}
\end{equation*}
$$

You must show all your working.

