Dr Oliver Mathematics
 Further Mathematics Second Order Differential Equations Past Examination Questions

This booklet consists of 37 questions across a variety of examination topics.
The total number of marks available is 435 .

1. Find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-6 \frac{\mathrm{~d} y}{\mathrm{~d} x}+8 y=\mathrm{e}^{3 x} \tag{6}
\end{equation*}
$$

Solution

Complementary function:

$$
m^{2}-6 m+8=0 \Rightarrow(m-2)(m-4)=0 \Rightarrow m=2 \text { or } m=4
$$

and hence the complementary function is

$$
y=A \mathrm{e}^{2 x}+B \mathrm{e}^{4 x}
$$

Particular integral: try

$$
y=C \mathrm{e}^{3 x} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 C \mathrm{e}^{3 x} \Rightarrow \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=9 C \mathrm{e}^{3 x}
$$

Substitute into the differential equation:

$$
9 C-18 C+8 C=1 \Rightarrow C=-1
$$

Hence the particular integral is $y=-\mathrm{e}^{3 x}$.
General solution: hence the general solution is

$$
y=A \mathrm{e}^{2 x}+B \mathrm{e}^{4 x}-\mathrm{e}^{3 x} .
$$

2. Find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-8 \frac{\mathrm{~d} y}{\mathrm{~d} x}+16 y=4 x \tag{7}
\end{equation*}
$$

Solution

Complementary function:

$$
m^{2}-8 m+16=0 \Rightarrow(m-4)^{2}=0 \Rightarrow m=4(\text { repeated root })
$$

and hence the complementary function is

$$
y=(A+B x) \mathrm{e}^{4 x} .
$$

Particular integral: try

$$
y=C x+D \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=C \Rightarrow \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=0 .
$$

Substitute into the differential equation:

$$
0-8 C+16(C x+D) \equiv 4 x \Rightarrow C=\frac{1}{4}, D=\frac{1}{8} .
$$

Hence the particular integral is $y=\frac{1}{4} x+\frac{1}{8}$.
General solution: hence the general solution is

$$
\underline{\underline{y=(A+B x) \mathrm{e}^{4 x}+\frac{1}{4} x+\frac{1}{8}}}
$$

3. (a) Find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+17 y=17 x+36 . \tag{7}
\end{equation*}
$$

Solution

Complementary function:

$$
m^{2}+2 m+17=0 \Rightarrow(m+1)^{2}+16=0 \Rightarrow m=-1 \pm 4 \mathrm{i}
$$

and hence the complementary function is

$$
y=\mathrm{e}^{-x}(A \sin 4 x+B \cos 4 x)
$$

Particular integral: try

$$
y=C x+D \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=C \Rightarrow \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=0 .
$$

Substitute into the differential equation:

$$
0+2 C+17(C x+D) \equiv 17 x+36 \Rightarrow C=1, D=2
$$

So the particular integral is $y=x+2$.
General solution: hence the general solution is

$$
y=\mathrm{e}^{-x}(A \sin 4 x+B \cos 4 x)+x+2 .
$$

(b) Show that, when x is large and positive, the solution approximates to a linear function and state the equation of the linear function.

Solution

For all x,

$$
-\sqrt{A^{2}+B^{2}} \leqslant A \sin 4 x+B \cos 4 x \leqslant \sqrt{A^{2}+B^{2}} .
$$

Since $\mathrm{e}^{-x} \rightarrow 0$ as $x \rightarrow \infty$,

$$
\mathrm{e}^{-x}(A \sin 4 x+B \cos 4 x) \rightarrow 0
$$

as $x \rightarrow \infty$. Hence

$$
y=\mathrm{e}^{-x}(A \sin 4 x+B \cos 4 x)+x+2 \rightarrow \underline{\underline{x+2}} \text { as } x \rightarrow \infty .
$$

4. Find the general solution of the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+4 \frac{\mathrm{~d} y}{\mathrm{~d} x}+5 y=65 \sin 2 x
$$

Solution

Complementary function:

$$
m^{2}+4 m+5=0 \Rightarrow(m+2)^{2}+1=0 \Rightarrow m=-2 \pm \mathrm{i}
$$

and hence the complementary function is

$$
y=\mathrm{e}^{-2 x}(A \sin x+B \cos x)
$$

Particular integral: try

$$
\begin{aligned}
y=C \sin 2 x+D \cos 2 x & \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 C \cos 2 x-2 D \sin 2 x \\
& \Rightarrow \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=-4 C \sin 2 x-4 D \cos 2 x
\end{aligned}
$$

Substitute into the differential equation and equate like terms:

$$
\begin{array}{ll}
\sin 2 x: & -4 C-8 D+5 C=65 \Rightarrow C-8 D=65 \\
\cos 2 x: & -4 D+8 C+5 D=0 \Rightarrow 8 C+D=0
\end{array}
$$

Solving gives $C=1$ and $D=-8$ and hence the particular integral is

$$
y=\sin 2 x-8 \cos 2 x
$$

General solution: the general solution is

$$
\underline{\underline{y=\mathrm{e}^{-2 x}}(A \sin x+B \cos x)+\sin 2 x-8 \cos 2 x}
$$

5. The variables x and y satisfy the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-6 \frac{\mathrm{~d} y}{\mathrm{~d} x}+9 y=\mathrm{e}^{3 x} \tag{3}
\end{equation*}
$$

(a) Find the complementary function.

Solution

The auxiliary equation is

$$
m^{2}-6 m+9=0 \Rightarrow(m-3)^{2}=0 \Rightarrow m=3 \text { (repeated root) }
$$

and hence the complementary function is

$$
\underline{\underline{y=}(A+B x) \mathrm{e}^{3 x}} .
$$

(b) Explain briefly why there is no particular integral if either of the forms $y=k \mathrm{e}^{3 x}$ or $y=k x \mathrm{e}^{3 x}$.

Solution

Both of these functions are part of the complementary function and so they each satisfy the equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-6 \frac{\mathrm{~d} y}{\mathrm{~d} x}+9 y=0
$$

(c) Given that there is a particular integral of the form $y=k x^{2} \mathrm{e}^{3 x}$, find the value of k.

Solution

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\left(2 k x+3 k x^{2}\right) \mathrm{e}^{3 x} \text { and } \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\left(2 k+12 k x+9 k x^{2}\right) \mathrm{e}^{3 x}
$$

Substitute into the differential equation and equate like terms:

$$
\begin{aligned}
\mathrm{e}^{3 x}: & 2 k+0+0=1 \Rightarrow \underline{\underline{k=\frac{1}{2}}} \\
x \mathrm{e}^{3 x}: & 12 k-12 k+0=0 \text { (giving no information) } \\
x^{2} \mathrm{e}^{3 x}: & 9 k-18 k+9 k=0 \text { (giving no information). }
\end{aligned}
$$

6. Solve the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}-3 y=2 \mathrm{e}^{-x} \tag{10}
\end{equation*}
$$

given that $y \rightarrow 0$ as $x \rightarrow \infty$ and that $\frac{\mathrm{d} y}{\mathrm{~d} x}=-3$ when $x=0$.

Solution

The auxiliary equation is

$$
m^{2}-2 m-3=0 \Rightarrow(m-3)(m+1)=0 \Rightarrow m=-1 \text { or } m=3
$$

and hence the complementary function is

$$
y=A \mathrm{e}^{-x}+B \mathrm{e}^{3 x}
$$

Since e^{-x} is part of the complementary function, for the particular integral try

$$
y=C x e^{-x} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=(C-C x) \mathrm{e}^{-x} \Rightarrow \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=(C x-2 C) \mathrm{e}^{-x} .
$$

Substitute into the differential equation and equate like terms:

$$
\begin{aligned}
\mathrm{e}^{-x}: & -2 C-2 C=2 \\
x \mathrm{e}^{-x}: & C+2 C-3 C=0 \text { (and this gives us no information). }
\end{aligned}
$$

and hence $C=-\frac{1}{2}$. So the general solution is

$$
y=A \mathrm{e}^{-x}+B \mathrm{e}^{3 x}-\frac{1}{2} x \mathrm{e}^{-x}
$$

Since $y \rightarrow 0$ as $x \rightarrow \infty$ we need $B=0$ or else the function will become unbounded as $\mathrm{e}^{3 x} \rightarrow \infty$ as $x \rightarrow \infty$. Now

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=-A \mathrm{e}^{-x}+\left(-\frac{1}{2}+\frac{1}{2} x\right) \mathrm{e}^{-x}
$$

So

$$
x=0, \frac{\mathrm{~d} y}{\mathrm{~d} x}=-3 \Rightarrow-3=-A-\frac{1}{2} \Rightarrow A=\frac{5}{2} .
$$

Hence

$$
y=\frac{5}{2} \mathrm{e}^{-x}-\frac{1}{2} x \mathrm{e}^{-x}
$$

7. The variables x and y satisfy the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+4 \frac{\mathrm{~d} y}{\mathrm{~d} x}=12 \mathrm{e}^{2 x} \tag{6}
\end{equation*}
$$

(a) Find the general solution of the differential equation.

Solution

The auxiliary equation is

$$
m^{2}+4 m=0 \Rightarrow m(m+4)=0 \Rightarrow m=0 \text { or } m=-4
$$

and hence the complementary function is

$$
y=A+B \mathrm{e}^{-4 x}
$$

For the particular integral try

$$
y=C x e^{2 x} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 C \mathrm{e}^{2 x} \Rightarrow \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=4 C \mathrm{e}^{2 x}
$$

Substitute into the differential equation:

$$
4 C+8 C=12 \Rightarrow C=1
$$

So the particular integral is $y=\mathrm{e}^{2 x}$ and hence the general solution is

$$
y=A+B \mathrm{e}^{-4 x}+\mathrm{e}^{2 x} .
$$

(b) It is given that the curve which represents a particular solution of the differential equation has gradient 6 when $x=0$ and approximates to $y=\mathrm{e}^{2 x}$ when x is large and positive. Find the equation of the curve.

Solution

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=-4 B \mathrm{e}^{-4 x}+2 \mathrm{e}^{2 x} \text { and hence } x=0 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=-4 B+2 \Rightarrow B=-1 .
$$

Since y is approximated by $\mathrm{e}^{2 x}$ we also need $A=0$. Hence

$$
\underline{\underline{y=-\mathrm{e}^{-4 x}+\mathrm{e}^{2 x}}} .
$$

8. A differential equation is given by

$$
\begin{equation*}
\sin ^{2} x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-2 \sin x \cos x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=2 \sin ^{4} x \cos x, 0<x<\pi \tag{5}
\end{equation*}
$$

(a) Show that the substitution $y=u \sin x$, where u is a function of x, transforms this
differential equation into

$$
\frac{\mathrm{d}^{2} u}{\mathrm{~d} x^{2}}+u=\sin 2 x .
$$

Solution

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=u \cos x+\sin x \frac{\mathrm{~d} u}{\mathrm{~d} x}
$$

and

$$
\begin{aligned}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}} & =\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right) \\
& =\frac{\mathrm{d}}{\mathrm{~d} x}\left(u \cos x+\sin x \frac{\mathrm{~d} u}{\mathrm{~d} x}\right) \\
& =\frac{\mathrm{d} u}{\mathrm{~d} x} \cos x-u \sin x+\cos x \frac{\mathrm{~d} u}{\mathrm{~d} x}+\sin \frac{\mathrm{d}^{2} u}{\mathrm{~d} x^{2}} \\
& =2 \cos x \frac{\mathrm{~d} u}{\mathrm{~d} x}-u \sin x+\sin \frac{\mathrm{d}^{2} u}{\mathrm{~d} x^{2}} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \sin ^{2} x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-2 \sin x \cos x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=2 \sin ^{4} x \cos x \\
\Rightarrow & \sin ^{2} x\left(2 \cos x \frac{\mathrm{~d} u}{\mathrm{~d} x}-u \sin x+\sin \frac{\mathrm{d}^{2} u}{\mathrm{~d} x^{2}}\right) \\
& -2 \sin x \cos x\left(u \cos x+\sin x \frac{\mathrm{~d} u}{\mathrm{~d} x}\right)+2 u \sin x=2 \sin ^{4} x \cos x \\
\Rightarrow \quad & -u \sin ^{3} x+\sin ^{3} x \frac{\mathrm{~d}^{2} u}{\mathrm{~d} x^{2}}-2 u \sin x \cos ^{2} x+2 u \sin x=2 \sin ^{4} x \cos x \\
\Rightarrow \quad & -u \sin ^{3} x+\sin ^{3} x \frac{\mathrm{~d}^{2} u}{\mathrm{~d} x^{2}}+2 u \sin x\left(1-\cos ^{2} x\right)=2 \sin ^{4} x \cos x \\
\Rightarrow & \sin ^{3} x \frac{\mathrm{~d}^{2} u}{\mathrm{~d} x^{2}}+u \sin ^{3} x=2 \sin ^{4} x \cos x \\
\Rightarrow & \frac{\mathrm{~d}^{2} u}{\mathrm{~d} x^{2}}+u=2 \sin x \cos x \\
\Rightarrow \quad & \frac{\mathrm{~d}^{2} u}{\mathrm{~d} x^{2}}+u=\sin 2 x,
\end{aligned}
$$

as required.
(b) Hence find the general solution to the differential equation

$$
\begin{equation*}
\sin ^{2} x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-2 \sin x \cos x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=2 \sin ^{4} x \cos x \tag{6}
\end{equation*}
$$

giving your answer in the form $y=\mathrm{f}(x)$.

Solution

The auxiliary equation is

$$
m^{2}+1=0 \Rightarrow m= \pm \mathrm{i}
$$

and hence the complementary function is

$$
u=A \sin x+B \cos x
$$

Since the differential equation involves only the function and the second derivative for the particular integral we can try

$$
u=C \sin 2 x \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=2 C \cos 2 x \Rightarrow \frac{\mathrm{~d}^{2} u}{\mathrm{~d} x^{2}}=-4 C \sin 2 x
$$

Substitute into the differential equation:

$$
-4 C+C=1 \Rightarrow C=-\frac{1}{3} .
$$

So the particular integral is $u=-\frac{1}{3} \sin 2 x$ and hence the general solution is

$$
u=A \sin x+B \cos x-\frac{1}{3} \sin 2 x
$$

Since $y=u \sin x$,

$$
y=\sin x\left(A \sin x+B \cos x-\frac{1}{3} \sin 2 x\right)
$$

9. The differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+4 y=\sin k x
$$

is to be solved, where k is a constant.
(a) In the case $k=2$, by using a particular integral of the form $a x \cos 2 x+b x \sin 2 x$, find the general solution.

Solution

The auxiliary equation is

$$
m^{2}+4=0 \Rightarrow m= \pm 2 \mathrm{i}
$$

and hence the complementary function is

$$
\begin{gathered}
y=A \sin 2 x+B \cos 2 x . \\
\frac{\mathrm{d} y}{\mathrm{~d} x}=a \cos 2 x-2 a x \sin 2 x+b \sin 2 x+2 b x \cos 2 x \\
\frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=-4 a \sin 2 x-4 a x \cos 2 x+4 b \cos 2 x-4 b x \sin 2 x .
\end{gathered}
$$

Substitute into the differential equation and equate like terms:

$$
\begin{aligned}
\sin 2 x: & -4 a+0=1 \Rightarrow a=-\frac{1}{2} \\
\cos 2 x: & 4 b+0=0 \Rightarrow b=0 \\
x \sin 2 x: & -4 b+4 b=0 \text { (giving us no information) } \\
x \cos 2 x: & -4 a+4 a=0 \text { (giving us no information). }
\end{aligned}
$$

So the particular integral is $y=-\frac{1}{2} x \sin 2 x$ and hence the general solution is

$$
\underline{\underline{y=A \sin 2 x+B \cos 2 x-\frac{1}{2} x \sin 2 x}}
$$

(b) Describe briefly the behaviour of your solution for y when $x \rightarrow \infty$.

Solution

$|y| \rightarrow \infty$ as $x \rightarrow \infty$ as the the terms in $\sin 2 x$ and $\cos 2 x$ are bounded but the final term is unbounded.
(c) In the case $k \neq 2$, explain briefly whether y would exhibit the same behaviour as in part (b) when $x \rightarrow \infty$.

Solution

No: if $k \neq 2$ then the particular integral would have the form $y=C \sin k x+$ $D \cos k x$ and this, like the terms in the complementary function, is bounded.
10. The variables x and y satisfy the differential equation

$$
2 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+3 \frac{\mathrm{~d} y}{\mathrm{~d} x}-2 y=5 \mathrm{e}^{-2 x}
$$

(a) Find the complementary function of the differential equation.

Solution

The auxiliary equation is

$$
2 m^{2}+3 m-2=0 \Rightarrow(2 m-1)(m+2)=0 \Rightarrow m=\frac{1}{2} \text { or } m=-2
$$

and hence the complementary function is

$$
y=A \mathrm{e}^{\frac{1}{2} x}+B \mathrm{e}^{-2 x} .
$$

(b) Given that there is a particular integral of the form $y=p x \mathrm{e}^{-2 x}$, find the constant p.

Solution

$$
y=p x \mathrm{e}^{-2 x} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=(p-2 p x) \mathrm{e}^{-2 x} \Rightarrow \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=(-4 p+4 p x) \mathrm{e}^{-2 x}
$$

Substitute into the differential equation and equate like terms:

$$
\begin{aligned}
\mathrm{e}^{-2 x}: & -8 p+3 p+0=5 \Rightarrow \underline{\underline{p=-1}} \\
x \mathrm{e}^{-2 x}: & 8 p-6 p-2 p=0 \text { (giving no information). }
\end{aligned}
$$

(c) Find the solution of the differential equation for which $y=0$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=4$ when $x=0$.

Solution

The general solution is

$$
y=A \mathrm{e}^{\frac{1}{2} x}+B \mathrm{e}^{-2 x}-x \mathrm{e}^{-2 x}
$$

Now $y=0$ when $x=0$ and hence $A+B=0$. Next,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2} A \mathrm{e}^{\frac{1}{2} x}-2 B \mathrm{e}^{-2 x}-\mathrm{e}^{-2 x}+2 x \mathrm{e}^{-2 x}
$$

and, since $\frac{\mathrm{d} y}{\mathrm{~d} x}=4$ when $x=0$, we have $4=\frac{1}{2} A-2 B-1$. Solving these simultaneous equations gives $A=2$ and $B=-2$. So the solution is

$$
y=2 \mathrm{e}^{\frac{1}{2} x}-2 \mathrm{e}^{-2 x}-x \mathrm{e}^{-2 x} .
$$

11. Find the solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+3 \frac{\mathrm{~d} y}{\mathrm{~d} x}+5 y=\mathrm{e}^{-x} \tag{11}
\end{equation*}
$$

for which $y=\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ when $x=0$.

Solution

The auxiliary equation is

$$
m^{2}+2 m+5=0 \Rightarrow(m+1)^{2}+4=0 \Rightarrow m=-1 \pm 2 \mathrm{i}
$$

and so the complementary function is

$$
y=\mathrm{e}^{-x}(A \sin 2 x+B \cos 2 x)
$$

For the particular integral, try $y=C \mathrm{e}^{-x}$. (Note that this is not part of the complementary function: both $\mathrm{e}^{-x} \sin 2 x$ and $\mathrm{e}^{-x} \cos 2 x$ are but not e^{-x} on its own.) Then

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=-C \mathrm{e}^{-x} \text { and } \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=C \mathrm{e}^{-x}
$$

Substitute into the differential equation:

$$
C-3 C+5 C=1 \Rightarrow C=\frac{1}{3} .
$$

So the particular integral is $y=\frac{1}{3} \mathrm{e}^{-x}$ and hence the general solution is

$$
y=\mathrm{e}^{-x}\left(\frac{1}{3}+A \sin 2 x+B \cos 2 x\right)
$$

Now, since $y=0$ when $x=0$, we have

$$
0=\frac{1}{3}+B \Rightarrow B=-\frac{1}{3}
$$

Next,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=-\mathrm{e}^{-x}\left(\frac{1}{3}+A \sin 2 x-\frac{1}{3} \cos 2 x\right)+\mathrm{e}^{-x}\left(2 A \cos 2 x+\frac{2}{3} \sin 2 x\right)
$$

So,

$$
x=0, \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \Rightarrow 0=\frac{1}{3}-\frac{1}{3}+2 A \Rightarrow A=0
$$

So the solution is

$$
y=\mathrm{e}^{-x}\left(\frac{1}{3}-\frac{1}{3} \cos 2 x\right) .
$$

12. The variables x and y satisfy the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+16 y=8 \cos 4 x \tag{2}
\end{equation*}
$$

(a) Find the complementary function of the differential equation.

Solution

The auxiliary equation is

$$
m^{2}+16=0 \Rightarrow m= \pm 4 \mathrm{i}
$$

and so the complementary function is

$$
y=A \sin 4 x+B \cos 4 x .
$$

(b) Given that there is a particular integral of the form $y=p x \sin 4 x$, where p is a constant, find the general solution of the differential equation.

Solution

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=p \sin 4 x+4 p x \cos 4 x \text { and } \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=8 p \cos 4 x-16 p x \sin 4 x
$$

Substitute into the differential equation and equate like terms:

$$
\begin{aligned}
x \sin 4 x: & -16 p+16 p=0 \text { (and this tells us nothing) } \\
\cos 4 x: & 8 p+0=8 \Rightarrow p=1 .
\end{aligned}
$$

So the particular integral is $y=x \sin 4 x$ and hence the general solution is

$$
y=A \sin 4 x+B \cos 4 x+x \sin 4 x
$$

(c) Find the solution of the equation for which $y=2$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ when $x=0$.

Solution

$x=0$ and $y=2$ tells us that $B=2$.

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=4 A \cos 4 x-8 \sin 4 x+\sin 4 x+4 x \cos 2 x
$$

and so $x=\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ tells us that $A=0$. Hence

$$
y=2 \cos 4 x+x \sin 4 x
$$

13. (a) Find the general solution of the differential equation

$$
\begin{equation*}
3 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+5 \frac{\mathrm{~d} y}{\mathrm{~d} x}-2 y=-2 x+13 \tag{7}
\end{equation*}
$$

Solution

The auxiliary equation is

$$
3 m^{2}+5 m-2=0 \Rightarrow(3 m-1)(m+2)=0 \Rightarrow m=\frac{1}{3} \text { or } m=-2
$$

and hence the complementary function is

$$
y=A \mathrm{e}^{\frac{1}{3} x}+B \mathrm{e}^{-2 x}
$$

For the particular integral, try

$$
y=C x+D \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=C \Rightarrow \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=0
$$

Substitute into the differential equation and equate like terms:

$$
5 C-2(C x+D)=-2 x+13 \Rightarrow C=-1 \text { and } D=-4
$$

So the particular integral is $y=-x-4$ and the general solution is

$$
y=A \mathrm{e}^{\frac{1}{3} x}+B \mathrm{e}^{-2 x}-x-4 .
$$

(b) Find the particular solution for which $y=-\frac{7}{2}$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ when $x=0$.

Solution

$$
x=0, y=-\frac{7}{2} \Rightarrow-\frac{7}{2}=A+B-4 .
$$

Differentiate:

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{3} A \mathrm{e}^{\frac{1}{3} x}-2 B \mathrm{e}^{-2 x}-1 \Rightarrow 0=\frac{1}{3} A-2 B
$$

Solve these simultaneous equations to get $A=\frac{3}{7}$ and $B=\frac{1}{14}$. So the solution is

$$
\underline{\underline{y=}} \frac{3}{7} \mathrm{e}^{\frac{1}{3} x}+\frac{1}{14} \mathrm{e}^{-2 x}-x-4 .
$$

(c) Write down the function to which y approximates when x is large and positive.

Solution

Since $\mathrm{e}^{-2 x} \rightarrow 0$ as $x \rightarrow \infty$, we have

$$
y=\frac{3}{7} \mathrm{e}^{\frac{1}{3} x}-x-4 .
$$

14. (a) Find the complementary function of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+y=\operatorname{cosec} x \tag{2}
\end{equation*}
$$

Solution

The auxiliary equation is

$$
m^{2}+1=0 \Rightarrow m= \pm \mathrm{i}
$$

and so the complementary function is

$$
y=A \sin x+B \cos x .
$$

(b) It is given that

$$
y=p(\ln \sin x) \sin x+q x \cos x
$$

where p and q are constants, is a particular integral of the differential equation.
(i) Show that

$$
\begin{equation*}
p-2(p+q) \sin ^{2} x \equiv 1 \tag{6}
\end{equation*}
$$

Solution

$$
\begin{aligned}
& y=p(\ln \sin x) \sin x+q x \cos x \\
\Rightarrow & \frac{\mathrm{~d} y}{\mathrm{~d} x}=p \cos x+p(\ln \sin x) \cos x+q \cos x-q x \sin x \\
\Rightarrow & \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=-q \sin x-p(\ln \sin x) \sin x+p \cos ^{2} x \operatorname{cosec} x-2 q \sin x-q x \cos x
\end{aligned}
$$

Since this satisfies the differential equation,

$$
\begin{array}{ll}
& -p \sin x+p \cos ^{2} x \operatorname{cosec} x-2 q \sin x=\operatorname{cosec} x \\
\Rightarrow & -p \sin x-2 q \sin x+p\left(1-\sin ^{2} x\right) \operatorname{cosec} x=\operatorname{cosec} x \\
\Rightarrow & -p \sin x-2 q \sin x+p \operatorname{cosec} x-p \sin x=\operatorname{cosec} x \\
\Rightarrow & -2 p \sin ^{2} x-2 q \sin ^{2} x+p=1 \\
\Rightarrow & \underline{\underline{p-2(p+q) \sin ^{2} x=1}}
\end{array}
$$

as required.
(ii) Deduce the values of p and q.

Solution

Since this an identity,

$$
x=0 \Rightarrow \underline{\underline{p=1}} \text { and } x=\frac{\pi}{2} \Rightarrow \underline{\underline{q=-1}} .
$$

(c) Write down the general solution of the differential equation. State the set of values of x, in the interval $0 \leqslant x \leqslant 2 \pi$, for which the solution is valid, justifying your answer.

Solution

The general solution is

$$
\underline{y=A \sin x+B \cos x+(\ln \sin x) \sin x-x \cos x} .
$$

y does not exist when $\sin x=0$ and hence the required range of values for x is

$$
\underline{\underline{0<x}<\pi \text { and } \pi<x<2 \pi} .
$$

15. (a) Find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}-6 \frac{\mathrm{~d} y}{\mathrm{~d} t}+10 y=\mathrm{e}^{2 t} \tag{6}
\end{equation*}
$$

giving your answer in the form $y=\mathrm{f}(t)$.

Solution

The auxiliary equation is

$$
m^{2}-6 m+10=0 \Rightarrow(m-3)^{2}+1=0 \Rightarrow m=3 \pm \mathrm{i}
$$

and hence the complementary function is

$$
y=\mathrm{e}^{3 t}(A \sin t+B \cos t) .
$$

For the particular integral try

$$
y=C \mathrm{e}^{2 t} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} t}=2 C \mathrm{e}^{2 t} \Rightarrow \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}=4 C \mathrm{e}^{2 t} .
$$

Substitute into the differential equation:

$$
4 C-12 C+10 C=1 \Rightarrow C=\frac{1}{2}
$$

and hence the particular integral is $y=\frac{1}{2} \mathrm{e}^{2 t}$. So the general solution is

$$
y=\mathrm{e}^{3 t}(A \sin t+B \cos t)+\frac{1}{2} \mathrm{e}^{2 t} .
$$

(b) Given that $x=t^{\frac{1}{2}}, x>0, t>0$, and y is a function of x, show that

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=4 t \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} t} \tag{5}
\end{equation*}
$$

Solution

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \div \frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{\mathrm{d} y}{\mathrm{~d} t} \div\left(\frac{1}{2} t^{-\frac{1}{2}}\right)=2 t^{\frac{1}{2}} \frac{\mathrm{~d} y}{\mathrm{~d} t}
$$

and hence

$$
\begin{aligned}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}} & =\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right) \\
& =\frac{\mathrm{d}}{\mathrm{~d} x}\left(2 t^{\frac{1}{2}} \frac{\mathrm{~d} y}{\mathrm{~d} t}\right) \\
& =\frac{\mathrm{d}}{\mathrm{~d} t}\left(2 t^{\frac{1}{2}} \frac{\mathrm{~d} y}{\mathrm{~d} t}\right) \div \frac{\mathrm{d} x}{\mathrm{~d} t} \\
& =\left(t^{-\frac{1}{2}} \frac{\mathrm{~d} y}{\mathrm{~d} t}+2 t^{\frac{1}{2}} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}\right) \div\left(\frac{1}{2} t^{-\frac{1}{2}}\right) \\
& =2 \underline{\underline{\mathrm{~d} y} \mathrm{~d} t}+4 t \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}
\end{aligned}
$$

as required.
(c) Hence show that the substitution $x=t^{\frac{1}{2}}$ transforms the differential equation

$$
\begin{equation*}
x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-\left(12 x^{2}+1\right) \frac{\mathrm{d} y}{\mathrm{~d} x}+40 x^{3} y=4 x^{3} \mathrm{e}^{2 x^{2}} \tag{2}
\end{equation*}
$$

into

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}-6 \frac{\mathrm{~d} y}{\mathrm{~d} t}+10 y=\mathrm{e}^{2 t}
$$

Solution

$$
\begin{aligned}
& x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-\left(12 x^{2}+1\right) \frac{\mathrm{d} y}{\mathrm{~d} x}+40 x^{3} y=4 x^{3} \mathrm{e}^{2 x^{2}} \\
\Rightarrow & t^{\frac{1}{2}}\left(4 t \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} t}\right)-(12 t+1)\left(2 t^{\frac{1}{2}} \frac{\mathrm{~d} y}{\mathrm{~d} t}\right)+40 t^{\frac{3}{2}} y=4 t^{\frac{3}{2}} \mathrm{e}^{2 t} \\
\Rightarrow & 4 t^{\frac{3}{2}} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}+2 t^{\frac{1}{2}} \frac{\mathrm{~d} y}{\mathrm{~d} t}-24 t^{\frac{3}{2}} \frac{\mathrm{~d} y}{\mathrm{~d} t}-2 t^{\frac{1}{2}} \frac{\mathrm{~d} y}{\mathrm{~d} t}+40 t^{\frac{3}{2}} y=4 t^{\frac{3}{2}} \mathrm{e}^{2 t} \\
\Rightarrow & 4 t^{\frac{3}{2}} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}-24 t^{\frac{3}{2}} \frac{\mathrm{~d} y}{\mathrm{~d} t}+40 t^{\frac{3}{2}} y=4 t^{\frac{3}{2}} \mathrm{e}^{2 t} \\
\Rightarrow & \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}-6 \frac{\mathrm{~d} y}{\mathrm{~d} t}+10 y=\mathrm{e}^{2 t},
\end{aligned}
$$

as required.
(d) Hence write down the general solution of the differential equation

$$
\begin{equation*}
x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-\left(12 x^{2}+1\right) \frac{\mathrm{d} y}{\mathrm{~d} x}+40 x^{3} y=4 x^{3} \mathrm{e}^{2 x^{2}} \tag{1}
\end{equation*}
$$

Solution

$$
\underline{\underline{y=\mathrm{e}^{3 x^{2}}\left(A \sin x^{2}+B \cos x^{2}\right)+\frac{1}{2} \mathrm{e}^{2 x^{2}}} .}
$$

16. (a) Show that the substitution $x=\mathrm{e}^{t}$ transforms the differential equation

$$
\begin{equation*}
x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-4 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+6 y=30+20 \sin (\ln x) \tag{7}
\end{equation*}
$$

into

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}-5 \frac{\mathrm{~d} y}{\mathrm{~d} t}+6 y=3+20 \sin t
$$

Solution

This is a standard substitution and you need to know how to do this both correctly and quickly:

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{\mathrm{d} y}{\mathrm{~d} x} \times \frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{\mathrm{d} y}{\mathrm{~d} x} \times \mathrm{e}^{t}=x \frac{\mathrm{~d} y}{\mathrm{~d} x}
$$

and

$$
\begin{aligned}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}} & =\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\mathrm{~d} y}{\mathrm{~d} t}\right)=\frac{\mathrm{d}}{\mathrm{~d} t}\left(x \frac{\mathrm{~d} y}{\mathrm{~d} x}\right) \\
& =\frac{\mathrm{d}}{\mathrm{~d} x}\left(x \frac{\mathrm{~d} y}{\mathrm{~d} x}\right) \times \frac{\mathrm{d} x}{\mathrm{~d} t} \\
& =\left(\frac{\mathrm{d} y}{\mathrm{~d} x}+x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}\right) \times x \\
& =x \frac{\mathrm{~d} y}{\mathrm{~d} x}+x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}} .
\end{aligned}
$$

Finally, $x=\mathrm{e}^{t}$ and so $t=\ln x$. Hence

$$
\begin{aligned}
& x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-4 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+6 y=30+20 \sin (\ln x) \\
\Rightarrow & \left(x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+x \frac{\mathrm{~d} y}{\mathrm{~d} x}\right)-5 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+6 y=3+20 \sin (\ln x) \\
\Rightarrow & \frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}-5 \frac{\mathrm{~d} y}{\mathrm{~d} t}+6 y=3+20 \sin t,
\end{aligned}
$$

as required.
(b) Find the general solution of

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}-5 \frac{\mathrm{~d} y}{\mathrm{~d} t}+6 y=3+20 \sin t \tag{11}
\end{equation*}
$$

Solution

The auxiliary equation is

$$
m^{2}-5 m+6=0 \Rightarrow(m-2)(m-3)=0 \Rightarrow m=2 \text { or } m=3,
$$

and hence the complementary function is

$$
y=A \mathrm{e}^{2 t}+B \mathrm{e}^{3 t}
$$

For the particular integral, try

$$
\begin{aligned}
y=C+D \sin t+E \cos t & \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} t}=D \cos t-E \sin t \\
& \Rightarrow \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}=-D \sin t-E \cos t
\end{aligned}
$$

If we substitute into the differential equation and compare like terms:

$$
\begin{aligned}
\text { constant: } & 6 C=3 \Rightarrow C=\frac{1}{2} \\
\sin t: & -D+5 E+6 D=20 \Rightarrow 5 D+5 E=20 \\
\cos t: & -E-5 D+6 E=0 \Rightarrow-5 D+5 E=0
\end{aligned}
$$

and hence $D=2$ and $E=2$. Hence the particular integral is

$$
y=\frac{1}{2}+2 \sin t+2 \cos t
$$

and so the general solution is

$$
y=A \mathrm{e}^{2 t}+B \mathrm{e}^{3 t}+\frac{1}{2}+2 \sin t+2 \cos t .
$$

(c) Write down the general solution of

$$
\begin{equation*}
x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-4 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+6 y=3+20 \sin (\ln x) \tag{1}
\end{equation*}
$$

Solution

By 'write down' they are not suggesting that you cannot have a line of working, merely that you are in a position to answer this from your previous work. We just need to replace e^{t} by x and note that, for example, $\mathrm{e}^{2 t}=\left(\mathrm{e}^{t}\right)^{2}=x^{2}$. Hence

$$
y=A x^{2}+B x^{3}+\frac{1}{2}+2 \sin (\ln x)+2 \cos (\ln x) .
$$

17. (a) Show that the transformation $y=v x$ transforms the equation

$$
\begin{equation*}
x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+\left(2+9 x^{2}\right) y=x^{5} \tag{5}
\end{equation*}
$$

into the equation

$$
\frac{\mathrm{d}^{2} v}{\mathrm{~d} x^{2}}+9 v=x^{2}
$$

Solution

$$
y=v x \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=v+x \frac{\mathrm{~d} v}{\mathrm{~d} x}
$$

and

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=2 \frac{\mathrm{~d} v}{\mathrm{~d} x}+x \frac{\mathrm{~d}^{2} v}{\mathrm{~d} x^{2}}
$$

Substitute into (\dagger):

$$
\begin{aligned}
& x^{2}\left(2 \frac{\mathrm{~d} v}{\mathrm{~d} x}+x \frac{\mathrm{~d}^{2} v}{\mathrm{~d} x^{2}}\right)-2 x\left(v+x \frac{\mathrm{~d} v}{\mathrm{~d} x}\right)+\left(2+9 x^{2}\right)(v x)=x^{5} \\
\Rightarrow & 2 x^{2} \frac{\mathrm{~d} v}{\mathrm{~d} x}+x^{3} \frac{\mathrm{~d}^{2} v}{\mathrm{~d} x^{2}}-2 v x-2 x^{2} \frac{\mathrm{~d} v}{\mathrm{~d} x}+2 v x+9 v x^{3}=x^{5} \\
\Rightarrow & x^{3} \frac{\mathrm{~d}^{2} v}{\mathrm{~d} x^{2}}+9 v x^{3}=x^{5} \\
\Rightarrow & \frac{\mathrm{~d}^{2} v}{\mathrm{~d} x^{2}}+9 v=x^{2} .
\end{aligned}
$$

(b) Solve the differential equation (\ddagger) to find v as a function of x.

Solution

Complementary function: The characteristic equation is

$$
m^{2}+9=0 \Rightarrow m= \pm 3
$$

and so the complementary function is $v=A \sin 3 x+B \cos 3 x$.

Particular integral:

$$
v=\mu x^{2}+\nu x+\xi \Rightarrow \frac{\mathrm{d} v}{\mathrm{~d} x}=2 \mu x+\nu \Rightarrow \frac{\mathrm{d}^{2} v}{\mathrm{~d} x^{2}}=2 \mu
$$

and now

$$
2 \mu+9\left(\mu x^{2}+\nu x+\xi\right)=x^{2} \Rightarrow \mu=\frac{1}{9}, \nu=0, \xi=-\frac{1}{11}
$$

and we have

$$
v=\frac{1}{9} x^{2}-\frac{2}{81} .
$$

General solution:

$$
v=A \sin 3 x+B \cos 3 x+\frac{1}{9} x^{2}-\frac{2}{81} .
$$

(c) Hence state the general solution of the differential equation (\dagger).

Solution

Hence the general solution of the differential equation (\dagger) is

$$
\underline{\underline{y=x}\left(A \sin 3 x+B \cos 3 x+\frac{1}{9} x^{2}-\frac{1}{9} x-\frac{2}{81}\right)} .
$$

18. (a) Find the general solution of the differential equation

$$
\begin{equation*}
2 \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}+5 \frac{\mathrm{~d} x}{\mathrm{~d} t}+2 x=2 t+9 \tag{6}
\end{equation*}
$$

Solution

Complementary function:

$$
\begin{aligned}
2 m^{2}+5 m+2=0 & \Rightarrow(2 m+1)(m+2)=0 \\
& \Rightarrow m=-2 \text { or } m=-\frac{1}{2},
\end{aligned}
$$

and the complementary function is

$$
x=A \mathrm{e}^{-2 t}+B \mathrm{e}^{-\frac{1}{2} t}
$$

Particular integral:

$$
x=a t+b \Rightarrow \frac{\mathrm{~d} x}{\mathrm{~d} t}=a \Rightarrow \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}=0
$$

and

$$
0+5 a+2(a t+b)=2 t+9 \Rightarrow a=1, b=2
$$

and the particular integral is

$$
x=t+2 .
$$

General solution: Hence, the general solution is

$$
\underline{\underline{x=A \mathrm{e}^{-2 t}}+B \mathrm{e}^{-\frac{1}{2} t}+t+2} .
$$

(b) Find the particular solution of this differential equation for which $x=3$ and $\frac{\mathrm{d} x}{\mathrm{~d} t}=$ -1 when $t=0$.

Solution

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=-2 A \mathrm{e}^{-2 t}-\frac{1}{2} B \mathrm{e}^{-\frac{1}{2} t}+1
$$

and

$$
\begin{align*}
3 & =A+B+2 \tag{1}\\
-1 & =-2 A-\frac{1}{2} B+1 . \tag{2}
\end{align*}
$$

Solve:

$$
B=1-A \Rightarrow-1=-2 A-\frac{1}{2}(1-A)+1 \Rightarrow-\frac{3}{2}=-\frac{3}{2} A
$$

and so

$$
A=1, B=0 .
$$

Hence

$$
\underline{x=\mathrm{e}^{-2 t}+t+2}
$$

The particular solution in part (b) is used to model the motion of a particle P on the x-axis. At time t seconds $(t \geqslant 0), P$ is x metres from the origin O.
(c) Show that the minimum distance between O and P is $\frac{1}{2}(5+\ln 2) \mathrm{m}$ and justify that the distance is a minimum.

Solution

$$
\begin{aligned}
\frac{\mathrm{d} x}{\mathrm{~d} t}=0 & \Rightarrow-2 \mathrm{e}^{-2 t}+1=0 \\
& \Rightarrow \mathrm{e}^{-2 t}=\frac{1}{2} \\
& \Rightarrow-2 t=\ln \frac{1}{2} \\
& \Rightarrow t=-\frac{1}{2} \ln \frac{1}{2} \\
& \Rightarrow t=\frac{1}{2} \ln 2 .
\end{aligned}
$$

Now,

$$
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}=4 \mathrm{e}^{-2 t}>0
$$

and this is a minimum and

$$
\begin{aligned}
x & =\mathrm{e}^{-\ln 2}+\frac{1}{2} \ln 2+2 \\
& =\mathrm{e}^{\ln \frac{1}{2}}+\frac{1}{2} \ln 2+2 \\
& =\frac{1}{2}+\frac{1}{2} \ln 2+2 \\
& =\underline{\underline{\frac{1}{2}(5+\ln 2)} .}
\end{aligned}
$$

19. Given that $3 x \sin 2 x$ is a particular integral of the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+4 y=k \cos 2 x
$$

where k is a constant,
(a) calculate the value of k,

Solution

Particular integral: try $y=3 x \sin 2 x$:

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=3 \sin 2 x+6 x \cos 2 x \text { and } \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=12 \cos 2 x-12 x \sin 2 x .
$$

Now,

$$
\begin{aligned}
& (12 \cos 2 x-12 x \sin 2 x)+4(3 x \sin 2 x)=k \cos 2 x \\
\Rightarrow & 12 \cos 2 x=k \cos 2 x \\
\Rightarrow & \underline{k=12}
\end{aligned}
$$

(b) find the particular solution of the differential equation for which at $x=0, y=2$, and for which $x=\frac{\pi}{4}, y=\frac{\pi}{2}$.

Solution

Complementary function: The characteristic equation is

$$
m^{2}+4=0 \Rightarrow m= \pm 2
$$

and so the complementary function is $y=A \sin 2 x+B \cos 2 x$.
General solution: Hence the general solution is

$$
y=A \sin 2 x+B \cos 2 x+3 x \sin 2 x .
$$

$x=0, y=2: 2=0+B+0 \Rightarrow B=2$.
$x=\frac{\pi}{4}, y=\frac{\pi}{2}: \frac{\pi}{2}=A+0+\frac{3 \pi}{4} \Rightarrow A=-\frac{\pi}{4}$.
Hence, the particular solution of the differential equation is

$$
y=-\frac{\pi}{4} \sin 2 x+2 \cos 2 x+3 x \sin 2 x
$$

20. A scientist is modelling the amount of a chemical in the human bloodstream. The amount x of the chemical, measured in $\mathrm{mg} l^{-1}$, at a time t hours satisfies the differential
equation

$$
\begin{equation*}
2 x \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}-6\left(\frac{\mathrm{~d} x}{\mathrm{~d} t}\right)^{2}=x^{2}-3 x^{4}, x>0 \tag{5}
\end{equation*}
$$

(a) Show that the substitution $y=\frac{1}{x^{2}}$ transforms this differential equation into

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+y=3
$$

Solution

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{\mathrm{d} y}{\mathrm{~d} x} \times \frac{\mathrm{d} x}{\mathrm{~d} t}=-\frac{2}{x^{3}} \frac{\mathrm{~d} x}{\mathrm{~d} t}
$$

and

$$
\begin{aligned}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}} & =\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\mathrm{~d} y}{\mathrm{~d} t}\right) \\
& =\frac{\mathrm{d}}{\mathrm{~d} t}\left(-\frac{2}{x^{3}} \frac{\mathrm{~d} x}{\mathrm{~d} t}\right) \\
& =\frac{6}{x^{4}}\left(\frac{\mathrm{~d} x}{\mathrm{~d} t}\right)^{2}-\frac{2}{x^{3}} \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}
\end{aligned}
$$

Now,

$$
\begin{aligned}
& 2 x \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}-6\left(\frac{\mathrm{~d} x}{\mathrm{~d} t}\right)^{2}=x^{2}-3 x^{4} \\
\Rightarrow & \frac{2}{x^{3}} \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}-\frac{6}{x^{4}}\left(\frac{\mathrm{~d} x}{\mathrm{~d} t}\right)^{2}=\frac{1}{x^{2}}-3 \\
\Rightarrow \quad & -\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}=y-3 \\
\Rightarrow & \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}+y=3 .
\end{aligned}
$$

(b) Find the general solution of the differential equation (\dagger).

Solution

Complementary function:

$$
m^{2}+1=0 \Rightarrow m= \pm 1
$$

and the complementary function is $y=A \cos t+B \sin t$.
Particular integral: We try $y=c$:

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}=\frac{\mathrm{d} y}{\mathrm{~d} t}=0
$$

and $y=3$.
General solution: So, the general solution is

$$
y=A \cos t+B \sin t+3 \text {. }
$$

Given that at time $t=0, x=\frac{1}{2}$ and $\frac{\mathrm{d} x}{\mathrm{~d} t}=0$,
(c) find an expression for x in terms of t,

Solution

$$
y=A \cos t+B \sin t+3 \Rightarrow \frac{1}{x^{2}}=A \cos t+B \sin t+3
$$

Now,

$$
x=\frac{1}{2}, t=0 \Rightarrow 4=A+0+3 \Rightarrow A=1 .
$$

Next,

$$
\frac{1}{x^{2}}=A \cos t+B \sin t+3 \Rightarrow-\frac{2}{x^{3}} \frac{\mathrm{~d} x}{\mathrm{~d} t}=-A \sin t+B \cos t
$$

and

$$
x=\frac{1}{2}, \frac{\mathrm{~d} x}{\mathrm{~d} t}=0 \Rightarrow 0=0+B \Rightarrow B=0
$$

Hence,

$$
\begin{aligned}
\frac{1}{x^{2}}=\cos t+3 & \Rightarrow x^{2}=\frac{1}{\cos t+3} \\
& \Rightarrow x=\sqrt{\frac{1}{\cos t+3}}
\end{aligned}
$$

because $x \geqslant 0$.
(d) write down the maximum values of x as t varies.

Solution

$$
t=\pi \Rightarrow \underline{\underline{x=\sqrt{\frac{1}{2}}}} .
$$

21. For the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+3 \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=2 x(x+3) \tag{12}
\end{equation*}
$$

find the solution for which $x=0, \frac{\mathrm{~d} y}{\mathrm{~d} x}=1$, and $y=1$.

Solution

Complementary function:

$$
\begin{aligned}
m^{2}+3 m+2=0 & \Rightarrow(m+1)(m+2)=0 \\
& \Rightarrow m=-1 \text { or } m=-2,
\end{aligned}
$$

and so we have

$$
y=A \mathrm{e}^{-2 x}+B \mathrm{e}^{-x}
$$

Particular integral: Try

$$
y=C x^{2}+D x+E \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 C x+D \Rightarrow \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=2 C .
$$

Now,

$$
2 C+3(2 C x+D)+2\left(C x^{2}+D x+E\right) \equiv 2 x^{2}+6 x .
$$

Solve:
$\underline{x^{2}}: 2 C=2 \Rightarrow C=1$.
$\underline{x}: 6 C+2 D=6 \Rightarrow D=0$.
constant: $2 C+3 D+2 E=2 \Rightarrow E=-1$.

Hence,

$$
y=x^{2}-1
$$

General solution: The general solution is

$$
y=A \mathrm{e}^{-2 x}+B \mathrm{e}^{-x}+x^{2}-1 .
$$

Now,

$$
x=0, y=1 \Rightarrow 1=A+B+0-1 \Rightarrow A+B=2
$$

Differentiate:

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=-2 A \mathrm{e}^{-2 x}-B \mathrm{e}^{-x}+2 x
$$

and

$$
1=-2 A-B+0 \Rightarrow 2 A+B=-1
$$

Solve:

$$
2 A+(2-A)=-1 \Rightarrow A=-3, B=5
$$

and

$$
y=-3 \mathrm{e}^{-2 x}+5 \mathrm{e}^{-x}+x^{2}-1
$$

22. (a) Find the general solution of the differential equation

$$
\begin{equation*}
3 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-\frac{\mathrm{d} y}{\mathrm{~d} x}-2 y=x^{2} \tag{8}
\end{equation*}
$$

Solution

Complementary function:

$$
\begin{aligned}
3 m^{2}-m-2=0 & \Rightarrow(3 m+2)(m-1)=0 \\
& \Rightarrow m=-\frac{2}{3} \text { or } m=1,
\end{aligned}
$$

and so we have

$$
y=A \mathrm{e}^{-\frac{2}{3} x}+B \mathrm{e}^{x}
$$

Particular integral: try

$$
y=C x^{2}+D x+E \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 C x+D \Rightarrow \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=2 C .
$$

Now,

$$
3(2 C)-(2 C x+D)-2\left(C x^{2}+D x+E\right) \equiv x^{2}
$$

Solve:
$\underline{x^{2}}:-2 C=1 \Rightarrow C=-\frac{1}{2}$.
x: $-2 C-2 D=0 \Rightarrow D=\frac{1}{2}$.
constant: $6 C-D-2 E=0 \Rightarrow E=-\frac{7}{4}$.
Hence,

$$
y=-\frac{1}{2} x^{2}+\frac{1}{2} x-\frac{7}{4} .
$$

General solution: The general solution is

$$
\underline{\underline{y}=A \mathrm{e}^{-\frac{2}{3} x}+B \mathrm{e}^{x}-\frac{1}{2} x^{2}+\frac{1}{2} x-\frac{7}{4}} .
$$

(b) Find the particular solution for which, at $x=0, y=2$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=3$.

Solution

$$
x=0, y=2 \Rightarrow 2=A+B-\frac{7}{4} \Rightarrow A+B=\frac{15}{4} .
$$

Now,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{2}{3} A \mathrm{e}^{-\frac{2}{3} x}+B \mathrm{e}^{x}-x+\frac{1}{2}
$$

and

$$
3=-\frac{2}{3} A+B+\frac{1}{2} \Rightarrow-\frac{2}{3} A+B=\frac{5}{2} .
$$

Solve:

$$
\begin{aligned}
B=\frac{15}{4}-A & \Rightarrow-\frac{2}{3} A+\left(\frac{15}{4}-A\right)=\frac{5}{2} \\
& \Rightarrow-\frac{5}{3} A=-\frac{5}{4} \\
& \Rightarrow A=\frac{3}{4} \\
& \Rightarrow B=3
\end{aligned}
$$

Hence, the particular solution is

$$
\underline{\underline{y=\frac{3}{4}} \mathrm{e}^{-\frac{2}{3} x}+3 \mathrm{e}^{x}-\frac{1}{2} x^{2}+\frac{1}{2} x-\frac{7}{4}} .
$$

23. (a) Find, in terms of k, the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+4 \frac{\mathrm{~d} x}{\mathrm{~d} t}+3 x=k t+5 \tag{7}
\end{equation*}
$$

where k is a constant and $t>0$.

Solution

Complementary function:

$$
\begin{aligned}
m^{2}+4 m+3=0 & \Rightarrow(m+1)(m+3)=0 \\
& \Rightarrow m=-1 \text { or } m=-3,
\end{aligned}
$$

and so we have

$$
x=A \mathrm{e}^{-3 t}+B \mathrm{e}^{-t} .
$$

Particular integral: try try

$$
x=C t+D \Rightarrow \frac{\mathrm{~d} x}{\mathrm{~d} t}=C \Rightarrow \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}=0
$$

Now,

$$
0+4 C+3(C t+D)=k t+5 \Rightarrow C=\frac{1}{3} k, D=\frac{5}{3}-\frac{4}{9} k
$$

General solution: The general solution is

$$
\underline{\underline{x=A \mathrm{e}^{-3 t}}+B \mathrm{e}^{-t}+\frac{1}{3} k t+\frac{5}{3}-\frac{4}{9} k .}
$$

For large values of t, this general solution may be approximated by a linear function.
(b) Given that $k=6$, find the equation of this linear function.

Solution

$$
k=6 \Rightarrow x=A \mathrm{e}^{-3 t}+B \mathrm{e}^{-t}+2 t-1
$$

and hence the linear function is

$$
x \approx 2 t-1
$$

24.

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+4 \frac{\mathrm{~d} y}{\mathrm{~d} x}-5 y=4 \mathrm{e}^{x} . \tag{4}
\end{equation*}
$$

(a) Show that $\lambda x \mathrm{e}^{x}$ is a particular integral of the differential equation, where λ is a constant to be found.

Solution

Particular integral: try $y=\lambda x \mathrm{e}^{x}$:

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\lambda x \mathrm{e}^{x}+\lambda \mathrm{e}^{x} \text { and } \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\lambda x \mathrm{e}^{x}+2 \lambda \mathrm{e}^{x} .
$$

Now,

$$
\begin{aligned}
& {[\lambda x+2 \lambda+4(\lambda x+\lambda)-5(\lambda x)] \mathrm{e}^{x}=4 \mathrm{e}^{x} } \\
\Rightarrow \quad & \lambda x+2 \lambda+4(\lambda x+\lambda)-5(\lambda x)=4 \\
\Rightarrow & 6 \lambda=4 \\
\Rightarrow & \underline{\lambda=\frac{2}{3}} .
\end{aligned}
$$

(b) Find general solution of the differential equation.

Solution

Complementary function:

$$
\begin{aligned}
m^{2}+4 m-5=0 & \Rightarrow(m+5)(m-1)=0 \\
& \Rightarrow m=-5 \text { or } m=1,
\end{aligned}
$$

and so we have

$$
y=A \mathrm{e}^{-5 x}+B \mathrm{e}^{x} .
$$

General solution: The general solution is

$$
y=A \mathrm{e}^{-5 x}+B \mathrm{e}^{x}+\frac{2}{3} x \mathrm{e}^{x} .
$$

(c) Find the particular solution for which $y=-\frac{2}{3}$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{4}{3}$ at $x=0$.

Solution

$$
x=0, y=-\frac{2}{3} \Rightarrow-\frac{2}{3}=A+B+0 \Rightarrow A+B=-\frac{2}{3} .
$$

Now,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=-5 A \mathrm{e}^{-5 x}+B \mathrm{e}^{x}+\frac{2}{3} x \mathrm{e}^{x}+\frac{2}{3} \mathrm{e}^{x}
$$

and

$$
x=0, \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{4}{3} \Rightarrow-\frac{4}{3}=-5 A+B+\frac{2}{3} \Rightarrow-5 A+B=-2 .
$$

Solve:

$$
6 A=\frac{4}{3} \Rightarrow A=\frac{2}{9}, B=-\frac{8}{9}
$$

and the particular solution is

$$
y=\frac{2}{9} \mathrm{e}^{-5 x}-\frac{8}{9} \mathrm{e}^{x}+\frac{2}{3} x \mathrm{e}^{x} .
$$

25. Find the general solution of the differential equation

$$
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+6 \frac{\mathrm{~d} x}{\mathrm{~d} t}+10 x=\mathrm{e}^{-4 t}
$$

Solution

Complementary function:

$$
\begin{aligned}
m^{2}+6 m+10=0 & \Rightarrow(m+3)^{2}+1=0 \\
& \Rightarrow m=-3 \pm \mathrm{i}
\end{aligned}
$$

and so the complementary function is

$$
x=\mathrm{e}^{-3 t}(A \cos t+B \sin t)
$$

Particular integral: try $x=C \mathrm{e}^{-4 t}$:

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=-4 C \mathrm{e}^{-4 t} \text { and } \frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}=16 C \mathrm{e}^{-4 t}
$$

Now,

$$
(16 C-24 C+10 C) \mathrm{e}^{-4 t}=\mathrm{e}^{-4 t} \Rightarrow 2 C=1 \Rightarrow C=\frac{1}{2}
$$

and so the particular integral is

$$
x=\frac{1}{2} \mathrm{e}^{-4 t} .
$$

General solution: The general solution is

$$
x=\mathrm{e}^{-3 t}(A \cos t+B \sin t)+\frac{1}{2} \mathrm{e}^{-4 t} .
$$

26. Find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+6 \frac{\mathrm{~d} x}{\mathrm{~d} t}+9 x=5 \cos t \tag{10}
\end{equation*}
$$

Solution

Complementary function:

$$
m^{2}+6 m+9=0 \Rightarrow(m+3)^{2}=0 \Rightarrow m=-3 \text { (only) }
$$

and the complementary function is

$$
x=(A+B t) \mathrm{e}^{-3 t} .
$$

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=-C \sin t+D \cos t \text { or } \frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}=-C \cos t-D \sin t
$$

Now,

$$
\begin{array}{ll}
\underline{\sin t}: & -D-6 C+9 D=0 \Rightarrow-6 C+8 D=0 \\
\underline{\cos t}: & -C+6 D+9 C=5 \Rightarrow 8 C+6 D=5 .
\end{array}
$$

Solve:

$$
C=\frac{4}{3} D \Rightarrow \frac{50}{3} D=5 \Rightarrow D=\frac{3}{10}, C=\frac{2}{5}
$$

and we have

$$
x=\frac{2}{5} \cos t+\frac{3}{10} \sin t .
$$

General solution: The general solution is

$$
\underline{\underline{x=(A+B t) \mathrm{e}^{-3 t}+\frac{2}{5}} \cos t+\frac{3}{10} \sin t}
$$

27.

$$
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+5 \frac{\mathrm{~d} x}{\mathrm{~d} t}+6 x=2 \mathrm{e}^{-t}
$$

Given that $x=0$ and $\frac{\mathrm{d} x}{\mathrm{~d} t}=2$ at $t=0$,
(a) find x in terms of t.

Solution

Complementary function:

$$
\begin{aligned}
m^{2}+5 m+6=0 & \Rightarrow(m+2)(m+3)=0 \\
& \Rightarrow m=-3 \text { or } m=-2,
\end{aligned}
$$

and so we have

$$
x=A \mathrm{e}^{-3 t}+B \mathrm{e}^{-2 t}
$$

$\underline{\text { Particular integral: }}$ try $x=C \mathrm{e}^{-t}$:

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=-C \mathrm{e}^{-t} \text { or } \frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}=C \mathrm{e}^{-t}
$$

Now,

$$
(C-5 C+6 C) \mathrm{e}^{-t}=2 \mathrm{e}^{-t} \Rightarrow C=1
$$

and we have

$$
x=\mathrm{e}^{-t} .
$$

General solution: The general solution is

$$
x=A \mathrm{e}^{-3 t}+B \mathrm{e}^{-2 t}+\mathrm{e}^{-t} .
$$

Particular solution:

$$
x=0, t=0 \Rightarrow 0=A+B+1 \Rightarrow A+B=-1 .
$$

Now,

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=-3 A \mathrm{e}^{-3 t}-2 B \mathrm{e}^{-2 t}-\mathrm{e}^{-t}
$$

which means

$$
x=0, \frac{\mathrm{~d} x}{\mathrm{~d} t}=2 \Rightarrow 2=-3 A-2 B-1 \Rightarrow-3 A-2 B=3
$$

Solve:

$$
B=-A-1 \Rightarrow-3 A-2(-A-1)=3 \Rightarrow-A=1 \Rightarrow A=-1, B=0
$$

and we have

$$
\underline{\underline{x=-\mathrm{e}^{-3 t}}+\mathrm{e}^{-t}} .
$$

The particular solution in part (a) is used to model the motion of a particle P on the x-axis. At time t seconds, where $t \geqslant 0, P$ is x metres from the origin O.
(b) Show that the maximum distance between O and P is $\frac{2 \sqrt{3}}{9} \mathrm{~m}$ and justify that the distance is a maximum.

Solution

$$
\begin{aligned}
\frac{\mathrm{d} x}{\mathrm{~d} t}=0 & \Rightarrow 3 \mathrm{e}^{-3 t}-\mathrm{e}^{-t}=0 \\
& \Rightarrow \mathrm{e}^{-3 t}\left(3-\mathrm{e}^{2 t}\right)=0 \\
& \Rightarrow \mathrm{e}^{2 t}=3 \\
& \Rightarrow t=\frac{1}{2} \ln 3
\end{aligned}
$$

Now,

$$
\begin{aligned}
x & =-\mathrm{e}^{-\frac{3}{2} \ln 3}+\mathrm{e}^{-\frac{1}{2} \ln 3} \\
& =\mathrm{e}^{-\ln 3^{\frac{1}{2}}}-\mathrm{e}^{\ln 3^{-\frac{3}{2}}} \\
& =3^{-\frac{1}{2}}-3^{-\frac{3}{2}} \\
& =\frac{1}{\sqrt{3}}-\frac{1}{3 \sqrt{3}} \\
& =\underline{\underline{\frac{2 \sqrt{3}}{9}}} \\
& \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}=-9 \mathrm{e}^{-3 t}+\mathrm{e}^{-t}
\end{aligned}
$$

and

$$
\left.\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}\right|_{x=\frac{1}{2} \ln 3}=-9 \mathrm{e}^{-\frac{3}{2} \ln 3}+\mathrm{e}^{-\frac{1}{2} \ln 3}=-\frac{2 \sqrt{3}}{3}<0
$$

and this is a maximum.
28. (a) Find the value of λ for which $y=\lambda x \sin 5 x$ is a particular integral of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+25 y=3 \cos 5 x \tag{4}
\end{equation*}
$$

Solution

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\lambda \sin 5 x+5 \lambda x \cos 5 x
$$

and

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=5 \lambda \cos 5 x+5 \lambda x \cos 5 x-25 \lambda x \sin 5 x=10 \lambda \cos 5 x-25 \lambda x \sin 5 x
$$

Then

$$
\begin{aligned}
& 10 \lambda \cos 5 x-25 \lambda x \sin 5 x+25(\lambda x \sin 5 x)=3 \cos 5 x \\
\Rightarrow \quad & 10 \lambda \cos 5 x=3 \cos 5 x \\
\Rightarrow \quad & \underline{\underline{\lambda=\frac{3}{10}}} .
\end{aligned}
$$

(b) Using your answer to part (a), the general solution of the differential equation

Solution

Complementary function:

$$
m^{2}+25=0 \Rightarrow m= \pm 5 \mathrm{i}
$$

and so we have the complementary function is

$$
y=A \cos 5 x+B \sin 5 x
$$

General solution: The general solution is

$$
\underline{\underline{y=A \cos 5 x+B \sin 5 x+\frac{3}{10} x \sin 5 x}}
$$

Given that at $x=0, y=0$, and $\frac{\mathrm{d} y}{\mathrm{~d} x}=5$,
(c) find the particular solution of this differential equation, giving your solution in the
form $y=\mathrm{f}(x)$.

Solution

$$
x=0, y=0 \Rightarrow 0=A+0+0 \Rightarrow A=0 .
$$

Now,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=5 B \cos 5 x+\frac{3}{10} \sin 5 x+\frac{3}{2} x \cos 5 x
$$

and

$$
x=0, \frac{\mathrm{~d} y}{\mathrm{~d} x}=5 \Rightarrow 5=5 B+0+0 \Rightarrow B=1 .
$$

Hence

$$
y=\sin 5 x+\frac{3}{10} x \sin 5 x
$$

(d) Sketch the curve with equation $y=\mathrm{f}(x)$ for $0 \leqslant x \leqslant \pi$.

Solution

29. The differential equation

$$
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+6 \frac{\mathrm{~d} x}{\mathrm{~d} t}+9 x=\cos 3 t, t \geqslant 0
$$

describes the motion of a particle along the x-axis.
(a) Find the general solution to this differential equation.

Solution

Complementary function:

$$
m^{2}+6 m+9=0 \Rightarrow(m+3)^{2}=0 \Rightarrow m=-3 \text { (only) }
$$

and the complementary function is

$$
x=(A+B t) \mathrm{e}^{-3 t} .
$$

Particular integral: try $x=C \cos 3 t+D \sin 3 t$:

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=-3 C \sin 3 t+3 D \cos 3 t \text { and } \frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}=-9 C \cos 3 t-9 D \sin 3 t
$$

Now,

$$
\begin{array}{ll}
\underline{\sin t}: & -9 D-18 C+9 D=0 \Rightarrow C=0, \\
\underline{\cos t}: & -9 C+18 D+9 C=1 \Rightarrow D=\frac{1}{18},
\end{array}
$$

and this gives

$$
x=\frac{1}{18} \sin 3 t .
$$

General solution: The general solution is

$$
x=(A+B t) \mathrm{e}^{-3 t}+\frac{1}{18} \sin 3 t .
$$

(b) Find the particular solution of this differential equation for which, at $t=0, x=\frac{1}{2}$ and $\frac{\mathrm{d} x}{\mathrm{~d} t}=0$.

Solution

$$
x=\frac{1}{2}, t=0 \Rightarrow \frac{1}{2}=A+0+0 \Rightarrow A=\frac{1}{2} .
$$

Now,

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=(-3 A+B-3 B t) \mathrm{e}^{-3 t}+\frac{1}{6} \cos 3 t
$$

and

$$
t=0, \frac{\mathrm{~d} x}{\mathrm{~d} t}=0 \Rightarrow 0=-3 A+B+\frac{1}{6} \Rightarrow B=\frac{4}{3} .
$$

So we have

$$
x=\left(\frac{1}{2}+\frac{4}{3} t\right) \mathrm{e}^{-3 t}+\frac{1}{18} \sin 3 t .
$$

On the graph of the particular solution defined in part (b), the first turning point for $t>30$ is the point A.
(c) Find the approximate values for the coordinates of A.

Solution

Now,

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=(-3 A+B-3 B t) \mathrm{e}^{-3 t}+\frac{1}{6} \cos 3 t
$$

which means

$$
\frac{\mathrm{d} x}{\mathrm{~d} t} \approx \frac{1}{6} \cos 3 t
$$

and we want

$$
\begin{aligned}
\cos 3 t=0 & \Rightarrow 3 t=\frac{1}{2} \pi, \frac{3}{2} \pi, \ldots, \frac{(2 n-1)}{2} \pi, \ldots \\
& \Rightarrow t=\frac{1}{6} \pi, \frac{3}{6} \pi, \ldots, \frac{(2 n-1)}{6} \pi, \ldots
\end{aligned}
$$

Now,

$$
\begin{aligned}
\frac{(2 n-1)}{6} \pi>30 & \Rightarrow 2 n-1>\frac{180}{\pi} \\
& \Rightarrow 2 n>\frac{180}{\pi}+1 \\
& \Rightarrow n>\frac{1}{2}\left[\frac{180}{\pi}+1\right] \\
& \Rightarrow n>29.14788976(\mathrm{FCD})
\end{aligned}
$$

so we take $n=30$ which gives $\underline{\underline{t=\frac{59}{6} \pi}}$ and

$$
x=\left(\frac{1}{2}+\frac{4}{3} t\right) \mathrm{e}^{-3\left(\frac{59 \pi}{6}\right)}+\frac{1}{18} \sin 3\left(\frac{59 \pi}{6}\right) \approx \underline{\underline{-\frac{1}{18}} .}
$$

30. Find the general solution to the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+5 \frac{\mathrm{~d} x}{\mathrm{~d} t}+6 x=2 \cos t-\sin t \tag{9}
\end{equation*}
$$

Solution

Complementary function: The characteristic equation is

$$
\begin{aligned}
m^{2}+5 m+6=0 & \Rightarrow(m+2)(m+3)=0 \\
& \Rightarrow m=-2 \text { or } m=-3
\end{aligned}
$$

and so the complementary function is $x=A \mathrm{e}^{-3 t}+B \mathrm{e}^{-2 t}$.

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=-C \sin t+D \cos t \text { and } \frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}=-C \cos t-D \sin t
$$

Now,

$$
\begin{array}{ll}
\underline{\sin t}: & -D-5 C+6 D=-1 \Rightarrow-5 C+5 D=-1, \\
\underline{\cos t}: & -C+5 D+6 C=2 \Rightarrow 5 C+5 D=2,
\end{array}
$$

and this gives $C=\frac{3}{10}, D=\frac{1}{10}$. Thus,

$$
x=\frac{3}{10} \cos t+\frac{1}{10} \sin t .
$$

General solution: The general solution is

$$
x=A \mathrm{e}^{-3 t}+B \mathrm{e}^{-2 t}+\frac{3}{10} \cos t+\frac{1}{10} \sin t .
$$

31. (a) Find the value of λ for which $\lambda t^{2} \mathrm{e}^{3 t}$ is a particular integral of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}-6 \frac{\mathrm{~d} y}{\mathrm{~d} t}+9 y=6 \mathrm{e}^{3 t}, t \geqslant 0 \tag{5}
\end{equation*}
$$

Solution

Particular integral:

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=2 \lambda t \mathrm{e}^{3 t}+3 \lambda t^{2} \mathrm{e}^{3 t}, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}=2 \lambda \mathrm{e}^{3 t}+12 \lambda t \mathrm{e}^{3 t}+9 \lambda t^{2} \mathrm{e}^{3 t}
$$

If we substitute into the differential equation and compare coefficients:

$$
\begin{aligned}
t^{2} \mathrm{e}^{3 t}: & 9 \lambda-18 \lambda+9 \lambda=0 \text { (and this tells us nothing) } \\
t \mathrm{e}^{3 t}: & 12 \lambda-12 \lambda=0 \text { (and this, again, tells us nothing) } \\
\mathrm{e}^{3 t}: & 2 \lambda=6 \Rightarrow \underline{\underline{\lambda=3}} .
\end{aligned}
$$

(b) Hence find the general solution of the differential equation.

Solution

Complementary function: The characteristic equation is

$$
m^{2}-6 m+9=0 \Rightarrow(m-3)^{2}=0
$$

and so the complementary function is $y=\mathrm{e}^{3 t}(A+B t)$.
General solution: Hence the general solution is

$$
y=\mathrm{e}^{3 t}\left(A+B t+3 t^{2}\right) .
$$

Given that when $t=0, y=5$ and $\frac{\mathrm{d} y}{\mathrm{~d} t}=4$,
(c) find the particular solution of this differential equation, giving your solution in the form $y=\mathrm{f}(t)$.

Solution

$$
t=0, y=5 \Rightarrow A=5
$$

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=3 \mathrm{e}^{3 t}\left(5+B t+3 t^{2}\right)+\mathrm{e}^{3 t}(B+6 t)
$$

and so

$$
t=0, \frac{\mathrm{~d} y}{\mathrm{~d} t}=4 \Rightarrow 15+B=4 \Rightarrow B=-11
$$

Hence the particular solution is

$$
y=\mathrm{e}^{3 t}\left(5-11 t+3 t^{2}\right)
$$

32. (a) Show that the transformation $y=v x$ transforms the equation

$$
\begin{equation*}
4 x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-8 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+\left(8+4 x^{2}\right) y=x^{4} \tag{6}
\end{equation*}
$$

into the equation

$$
4 \frac{\mathrm{~d}^{2} v}{\mathrm{~d} x^{2}}+4 v=x
$$

Solution

$$
y=v x \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=v+x \frac{\mathrm{~d} v}{\mathrm{~d} x}
$$

and

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=2 \frac{\mathrm{~d} v}{\mathrm{~d} x}+x \frac{\mathrm{~d}^{2} v}{\mathrm{~d} x^{2}}
$$

Substitute into (\dagger):

$$
\begin{aligned}
& 4 x^{2}\left(2 \frac{\mathrm{~d} v}{\mathrm{~d} x}+x \frac{\mathrm{~d}^{2} v}{\mathrm{~d} x^{2}}\right)-8 x\left(v+x \frac{\mathrm{~d} v}{\mathrm{~d} x}\right)+\left(8+4 x^{2}\right)(v x)=x^{4} \\
\Rightarrow & 8 x^{2} \frac{\mathrm{~d} v}{\mathrm{~d} x}+4 x^{3} \frac{\mathrm{~d}^{2} v}{\mathrm{~d} x^{2}}-8 v x-8 x^{2} \frac{\mathrm{~d} v}{\mathrm{~d} x}+8 v x+4 v x^{3}=x^{4} \\
\Rightarrow & 4 x^{3} \frac{\mathrm{~d}^{2} v}{\mathrm{~d} x^{2}}+4 v x^{3}=x^{4} \\
\Rightarrow & 4 \frac{\mathrm{~d}^{2} v}{\mathrm{~d} x^{2}}+4 v=x .
\end{aligned}
$$

(b) Solve the differential equation (\ddagger) to find v as a function of x.

Solution

Complementary function: The characteristic equation is

$$
4 m^{2}+4=0 \Rightarrow m= \pm \mathrm{i}
$$

and so the complementary function is

$$
v=A \sin x+B \cos x .
$$

Particular integral: For the particular solution, try $v=C x+D$:

$$
\frac{\mathrm{d} v}{\mathrm{~d} x}=C, \frac{\mathrm{~d}^{2} v}{\mathrm{~d} x^{2}}=0
$$

and substitute:

$$
0+4(C x+D) \equiv x \Rightarrow C=\frac{1}{4}, D=0
$$

General solution: Hence the general solution of (\ddagger) is

$$
v=A \sin x+B \cos x+\frac{1}{4} x .
$$

(c) Hence state the general solution of the differential equation (\dagger).

Solution

$\underline{\left.\underline{y=x\left(A \sin x+B \cos x+\frac{1}{4} x\right.}\right)}$.
33. (a) Show that the substitution $x=\mathrm{e}^{z}$ transforms the differential equation

$$
\begin{equation*}
x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}-2 y=3 \ln x, x>0 \tag{7}
\end{equation*}
$$

into the equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} z^{2}}+\frac{\mathrm{d} y}{\mathrm{~d} z}-2 y=3 z
$$

Solution

This is a standard substitution and you need to know how to do this both correctly and quickly:

$$
\frac{\mathrm{d} y}{\mathrm{~d} z}=\frac{\mathrm{d} y}{\mathrm{~d} x} \times \frac{\mathrm{d} x}{\mathrm{~d} z}=\frac{\mathrm{d} y}{\mathrm{~d} x} \times \mathrm{e}^{z}=x \frac{\mathrm{~d} y}{\mathrm{~d} x}
$$

and

$$
\begin{aligned}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} z^{2}} & =\frac{\mathrm{d}}{\mathrm{~d} z}\left(\frac{\mathrm{~d} y}{\mathrm{~d} z}\right)=\frac{\mathrm{d}}{\mathrm{~d} z}\left(x \frac{\mathrm{~d} y}{\mathrm{~d} x}\right) \\
& =\frac{\mathrm{d}}{\mathrm{~d} x}\left(x \frac{\mathrm{~d} y}{\mathrm{~d} x}\right) \times \frac{\mathrm{d} x}{\mathrm{~d} z} \\
& =\left(\frac{\mathrm{d} y}{\mathrm{~d} x}+x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}\right) \times x \\
& =x \frac{\mathrm{~d} y}{\mathrm{~d} x}+x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}} .
\end{aligned}
$$

Hence we can rewrite (\dagger) as

$$
\begin{aligned}
x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}-2 y=3 \ln x & \Rightarrow\left[x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+x \frac{\mathrm{~d} y}{\mathrm{~d} x}\right]+x \frac{\mathrm{~d} y}{\mathrm{~d} x}-2 y=3 \ln x \\
& \Rightarrow \frac{\mathrm{~d}^{2} y}{\mathrm{~d} z^{2}}+\frac{\mathrm{d} y}{\mathrm{~d} z}-2 y=3 \ln \left(\mathrm{e}^{z}\right) \\
& \Rightarrow \frac{\mathrm{d}^{2} y}{\underline{\underline{\mathrm{~d} z^{2}}}+\frac{\mathrm{d} y}{\mathrm{~d} z}-2 y=3 z .}
\end{aligned}
$$

(b) Find the general solution of the differential equation (\ddagger).

Solution

Complementary function: The characteristic equation is

$$
m^{2}+m-2=0 \Rightarrow(m+2)(m-1)=0 \Rightarrow m=-2 \text { or } 1
$$

and hence the complementary function is

$$
y=A \mathrm{e}^{-2 z}+B \mathrm{e}^{z} .
$$

Particular integral: For the particular integral, try

$$
y=C z+D \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=C \Rightarrow \frac{\mathrm{~d}^{2} y}{\mathrm{~d} z^{2}}=0
$$

and substitute into (\ddagger) :

$$
0+C-2(C z+D)=3 z \Rightarrow C=-\frac{3}{2}, D=-\frac{3}{4} .
$$

General solution: Hence the general solution is

$$
y=A \mathrm{e}^{-2 z}+B \mathrm{e}^{z}-\frac{3}{2} z-\frac{3}{4} .
$$

(c) Hence obtain the general solution of the differential equation (\dagger) giving your answer in the form $y=\mathrm{f}(x)$.

Solution

$$
\begin{aligned}
y & =A \mathrm{e}^{-2 z}+B \mathrm{e}^{z}-\frac{3}{2} z-\frac{3}{4} \\
& =A\left(\mathrm{e}^{z}\right)^{-2}+B\left(\mathrm{e}^{z}\right)-\frac{3}{2} z-\frac{3}{4} \\
& =A x^{-2}+B x-\frac{3}{2} \ln x-\frac{3}{4} .
\end{aligned}
$$

34. (a) Find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+10 y=27 \mathrm{e}^{-x} \tag{6}
\end{equation*}
$$

Solution

Complementary function: The characteristic equation is

$$
m^{2}+2 m+10=0 \Rightarrow m=-1+3 \mathrm{i}
$$

and hence the complementary function is

$$
y=\mathrm{e}^{-x}(A \sin 3 x+B \cos 3 x) .
$$

Particular integral: For the particular integral, try $y=C \mathrm{e}^{-x}$:

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=-C \mathrm{e}^{-x}, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=C \mathrm{e}^{-x}
$$

and substitute this into the differential equation:

$$
C \mathrm{e}^{-x}-2 C \mathrm{e}^{-x}+10 C \mathrm{e}^{-x}=27 \mathrm{e}^{-x}
$$

and hence $C=3$. So the general solution is

$$
y=\mathrm{e}^{-x}(A \sin 3 x+B \cos 3 x)+3 \mathrm{e}^{-x} .
$$

(b) Find the particular solution that satisfies $y=0$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ when $x=0$.

Solution

$x=0 \Rightarrow B+3=0 \Rightarrow B=-3$.

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=-\mathrm{e}^{-x}(A \sin 3 x-3 \cos 3 x)+\mathrm{e}^{-x}(3 A \cos 3 x+3 \sin 3 x)-3 \mathrm{e}^{-x}
$$

and so $\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \Rightarrow 3+3 A-3=0 \Rightarrow A=0$. So the particular solution is

$$
y=3 \mathrm{e}^{-x} \cos 3 x+3 \mathrm{e}^{-x} .
$$

35. (a) Show that the transformation $x=\mathrm{e}^{u}$ transforms the differential equation

$$
\begin{equation*}
x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-7 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+16 y=2 \ln x, x>0, \tag{6}
\end{equation*}
$$

into the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} u^{2}}-8 \frac{\mathrm{~d} y}{\mathrm{~d} u}+16 y=2 u \tag{II}
\end{equation*}
$$

Solution

$$
\frac{\mathrm{d} y}{\mathrm{~d} u}=\frac{\mathrm{d} y}{\mathrm{~d} x} \times \frac{\mathrm{d} x}{\mathrm{~d} u}=\frac{\mathrm{d} y}{\mathrm{~d} x} \times \mathrm{e}^{u}=x \frac{\mathrm{~d} y}{\mathrm{~d} x}
$$

and

$$
\begin{aligned}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} u^{2}} & =\frac{\mathrm{d}}{\mathrm{~d} u}\left(\frac{\mathrm{~d} y}{\mathrm{~d} u}\right)=\frac{\mathrm{d}}{\mathrm{~d} u}\left(x \frac{\mathrm{~d} y}{\mathrm{~d} u}\right) \\
& =\frac{\mathrm{d}}{\mathrm{~d} x}\left(x \frac{\mathrm{~d} y}{\mathrm{~d} x}\right) \times \frac{\mathrm{d} x}{\mathrm{~d} u} \\
& =\left(\frac{\mathrm{d} y}{\mathrm{~d} x}+x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}\right) \times x \\
& =x \frac{\mathrm{~d} y}{\mathrm{~d} x}+x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}
\end{aligned}
$$

Finally, $x=\mathrm{e}^{u}$ and so $u=\ln x$. Hence

$$
\begin{aligned}
& x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-7 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+16 y=2 \ln x \\
\Rightarrow & \left(x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+x \frac{\mathrm{~d} y}{\mathrm{~d} x}\right)-8 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+16 y=2 \ln x \\
\Rightarrow & \frac{\mathrm{~d}^{2} y}{\frac{\mathrm{~d} u^{2}}{}}-8 \frac{\mathrm{~d} y}{\mathrm{~d} u}+16 y=2 u,
\end{aligned}
$$

as required.
(b) Find the general solution of the differential equation (II), expressing y as a function of u.

Solution

Complementary function: The auxiliary equation is

$$
m^{2}-8 m+16=0 \Rightarrow(m-4)^{2}=0 \Rightarrow m=4
$$

and hence the complementary function is

$$
y=(A+B u) \mathrm{e}^{4 u} .
$$

Particular integral: For the particular integral, try

$$
y=C+D u \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} u}=D \Rightarrow \frac{\mathrm{~d}^{2} y}{\mathrm{~d} u^{2}}=0
$$

Substitute into the differential equation:

$$
0-8 D+16(C+D u)=2 u \Rightarrow D=\frac{1}{8}, C=\frac{1}{16}
$$

So the particular integral is $y=\frac{1}{4}+\frac{1}{2} u$.
General solution: Hence the general solution is

$$
y=(A+B u) \mathrm{e}^{4 u}+\frac{1}{16}+\frac{1}{8} u .
$$

(c) Hence obtain the general solution of the differential equation (I).

Solution

$$
y=(A+B \ln x) \mathrm{e}^{4 \ln x}+\frac{1}{16}+\frac{1}{8} \ln x=\underline{x}^{4}(A+B \ln x)+\frac{1}{16}+\frac{1}{8} \ln x .
$$

36. (a) Show that the transformation $x=\mathrm{e}^{u}$ transforms the differential equation

$$
\begin{equation*}
x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=-x^{-2}, x>0 \tag{6}
\end{equation*}
$$

into the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} u^{2}}-3 \frac{\mathrm{~d} y}{\mathrm{~d} u}+2 y=-\mathrm{e}^{-2 u} \tag{II}
\end{equation*}
$$

Solution

$$
\frac{\mathrm{d} y}{\mathrm{~d} u}=\frac{\mathrm{d} y}{\mathrm{~d} x} \times \frac{\mathrm{d} x}{\mathrm{~d} u}=\frac{\mathrm{d} y}{\mathrm{~d} x} \times \mathrm{e}^{u}=x \frac{\mathrm{~d} y}{\mathrm{~d} x}
$$

and

$$
\begin{aligned}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} u^{2}} & =\frac{\mathrm{d}}{\mathrm{~d} u}\left(\frac{\mathrm{~d} y}{\mathrm{~d} u}\right)=\frac{\mathrm{d}}{\mathrm{~d} u}\left(x \frac{\mathrm{~d} y}{\mathrm{~d} u}\right) \\
& =\frac{\mathrm{d}}{\mathrm{~d} x}\left(x \frac{\mathrm{~d} y}{\mathrm{~d} x}\right) \times \frac{\mathrm{d} x}{\mathrm{~d} u} \\
& =\left(\frac{\mathrm{d} y}{\mathrm{~d} x}+x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}\right) \times x \\
& =x \frac{\mathrm{~d} y}{\mathrm{~d} x}+x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}
\end{aligned}
$$

Finally, $x=\mathrm{e}^{u}$ and so $u=\ln x$. Hence

$$
\begin{aligned}
& x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=-x^{-2} \\
\Rightarrow & \left(x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+x \frac{\mathrm{~d} y}{\mathrm{~d} x}\right)-3 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=-\left(\mathrm{e}^{u}\right)^{2} \\
\Rightarrow & \frac{\mathrm{~d}^{2} y}{\mathrm{~d} u^{2}}-3 \frac{\mathrm{~d} y}{\mathrm{~d} u}+2 y=-\mathrm{e}^{-2 u}
\end{aligned},
$$

as required.
(b) Find the general solution of the differential equation (II).

Solution

Complementary function: The characteristic equation is

$$
\begin{aligned}
m^{2}-3 m+2=0 & \Rightarrow(m-1)(m-2)=0 \\
& \Rightarrow m=1 \text { or } m=2
\end{aligned}
$$

and so the complementary function is $y=A \mathrm{e}^{u}+B \mathrm{e}^{2 u}$.
Particular integral: try $y=C \mathrm{e}^{-2 u}$:

$$
\frac{\mathrm{d} y}{\mathrm{~d} u}=-2 C \mathrm{e}^{-2 u} \text { and } \frac{\mathrm{d} y}{\mathrm{~d} u}=4 C \mathrm{e}^{-2 u}
$$

and substitute into (\ddagger) :

$$
(4 C+6 C+2 C) \mathrm{e}^{-2 u}=-\mathrm{e}^{-2 u} \Rightarrow C=-\frac{1}{12}
$$

and the particular integral is

$$
y=-\frac{1}{12} \mathrm{e}^{-2 u}
$$

General solution: Hence the general solution is

$$
\underline{\underline{y}=A \mathrm{e}^{u}+B \mathrm{e}^{2 u}-\frac{1}{12} \mathrm{e}^{-2 u}} .
$$

(c) Hence obtain the general solution of the differential equation (I) giving your answer in the form $y=\mathrm{f}(x)$.

Solution

$$
y=A \mathrm{e}^{u}+B \mathrm{e}^{2 u}-\frac{1}{12} \mathrm{e}^{-2 u}=A x+B x^{2}-\frac{1}{12} x^{-2} .
$$

37. (a) Find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}=26 \sin 3 x \tag{8}
\end{equation*}
$$

Solution

Complementary function: The characteristic equation is

$$
m^{2}-2 m=0 \Rightarrow m(m-2)=0 \Rightarrow m=0 \text { or } 2
$$

and hence the complementary function is

$$
y=A+B \mathrm{e}^{2 x}
$$

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=-3 C \sin 3 x+3 D \cos 3 x \text { and } \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-9 C \cos 3 x-9 D \sin 3 x
$$

Now,

$$
\begin{array}{ll}
\underline{\sin 3 x}: & -9 D+6 C=26 \\
\underline{\cos 3 x}: & -9 C-6 D=0,
\end{array}
$$

and this gives $C=\frac{4}{3}$ and $D=-2$. The particular integral is

$$
y=\frac{4}{3} \cos 3 x-2 \sin 3 x \text {. }
$$

General solution: Hence the general solution is

$$
y=A+B \mathrm{e}^{2 x}+\frac{4}{3} \cos 3 x-2 \sin 3 x .
$$

(b) Find the particular solution of this differential equation for which $y=0$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ when $x=0$.

Solution

$$
x=0, y=0 \Rightarrow 0=A+B+\frac{4}{3}
$$

and

$$
\begin{aligned}
y=A+B \mathrm{e}^{2 x}+\frac{4}{3} \cos 3 x-2 \sin 3 x & \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 B \mathrm{e}^{2 x}-4 \sin 3 x-6 \cos 3 x \\
& \Rightarrow 0=2 B-6 .
\end{aligned}
$$

Sove:

$$
B=3 \text { and } A=-\frac{13}{3}
$$

and the particular solution is

$$
\underline{\underline{y=-\frac{13}{3}}+3 \mathrm{e}^{2 x}+\frac{4}{3} \cos 3 x-2 \sin 3 x}
$$

