Dr Oliver Mathematics AQA Further Maths Level 2
 June 2018 Paper 1
 1 hour 30 minutes

The total number of marks available is 70 .
You must write down all the stages in your working.
You are not permitted to use a scientific or graphical calculator in this paper.
1.

$$
\begin{equation*}
y=\frac{1}{2} x^{6}+\frac{1}{4} x^{4} . \tag{2}
\end{equation*}
$$

Work out $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
Simplify your answer.
2. P is the point $(-12, b)$.
Q is the point $(a, 4)$.
R is the point $(6,-2)$.
Q is the midpoint of $P R$.
Work out the values of a and b.
3.

$$
\mathbf{A}=\left(\begin{array}{cc}
2 & 4 \\
3 & -1
\end{array}\right) \text { and } \mathbf{B}=\left(\begin{array}{cc}
-2 & 6 \\
2 & 1
\end{array}\right)
$$

Work out AB.
4. $P=4 x$ and $Q=7 x$.
P increases by 25%.
Q decreases by 40%.
Now, P is 28 greater than Q.
Work out the value of x.
5. In the expansion and simplification of

$$
\begin{equation*}
(x-3)\left(x^{2}+5 x+k\right) \tag{3}
\end{equation*}
$$

the coefficient of x^{2} is equal to the coefficient of x.
k is a constant.
Work out the value of k.
6. A circle has centre $(-1,2)$ and radius 5 .

Which of these is the equation of the circle?
Tick one box.

$$
\begin{aligned}
& (x+1)^{2}+(y-2)^{2}=5 \\
& (x-1)^{2}+(y+2)^{2}=5 \\
& (x+1)^{2}+(y-2)^{2}=25 \\
& (x-1)^{2}+(y+2)^{2}=25
\end{aligned}
$$

7. Points A, B, and C lie on a circle, centre O.

Angle $A O C=(x+75)^{\circ}$.
Angle $A B C=(2 x)^{\circ}$.

Work out the value of x.

- 2 Piever

8. Write

$$
\begin{equation*}
(1+2 \sqrt{5})(4-\sqrt{5}) \tag{2}
\end{equation*}
$$

in the form $a+b \sqrt{5}$, where a and b are integers.
9.

$$
\mathrm{f}(x)=14-x^{2},
$$

for all real values of x.
Zre Olierer

Solve

$$
\mathrm{f}(2 x)=5 .
$$

You must show your working.
10. Rearrange
to make x the subject.
11. A curve has equation

$$
\begin{equation*}
\frac{1}{x y}=4-\frac{3}{y} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
y=2 x^{2}+3 x-9 \tag{4}
\end{equation*}
$$

At a point P on the curve, the tangent is parallel to the line

$$
y=4-5 x
$$

Work out the coordinates of P.
You must show your working.
12. In the diagram,

- A is the point $(15,0)$ and B lies on the y-axis.
- Angle $A B C=90^{\circ}$ and $\tan \theta=\frac{5}{3}$.

Work out the equation of the line $B C$.
13. Solve the simultaneous equations

$$
\begin{equation*}
x y=2 \text { and } y=3 x+5 . \tag{6}
\end{equation*}
$$

Do not use trial and improvement.
You must show your working.
14. Work out the value of

$$
\begin{equation*}
\left(3^{\frac{1}{2}}+3^{\frac{3}{2}}\right)^{2} \tag{3}
\end{equation*}
$$

You must show your working.
15. Here is the graph of
for values of x from -1 to 4 .

$$
\begin{equation*}
y=3 x-x^{2} \tag{4}
\end{equation*}
$$

By drawing a suitable linear graph on the grid, work out approximate solutions to

$$
x^{2}-4 x+2=0
$$

16. $y=\mathrm{f}(x)$ is a cubic curve with a maximum and a minimum stationary point.

- $\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{2}+2 x-3$.
- The y-coordinate of the minimum point is $2 \frac{1}{3}$.
- The y-coordinate of the maximum point is 13
- $(0,4)$ is a point on the curve.
- The tangent at $(0,4)$ has a negative gradient.

Sketch the curve on the grid below.
Show the coordinates of the stationary points.

17. (a) Use the factor theorem to show that $(x-2)$ is a factor of

$$
\begin{equation*}
x^{3}+8 x^{2}+5 x-50 \tag{1}
\end{equation*}
$$

(b) Hence, factorise fully

$$
\begin{equation*}
x^{3}+8 x^{2}+5 x-50 \tag{3}
\end{equation*}
$$

18. D, E, F, and S are points on a circle.
$R S T$ is a tangent.
The straight line $E D T$ is parallel to $F S$. $D S=D T$.
Drenimon.

Prove that $F D$ is parallel to $R S T$.
Use angle $D T S$ as x to help you.
19. Write
in the form

$$
\begin{equation*}
2 x^{2}-16 x+13 \tag{4}
\end{equation*}
$$

$$
a(x+b)^{2}+c
$$

where a, b, and c are integers.
20. In triangle $A B C$,

- $A B=6 \sqrt{2} \mathrm{~cm}$,
- angle $A B C=45^{\circ}$, and
- angle $A C B=60^{\circ}$.

Work out the value of x.
Give your answer in the form $a \sqrt{b}$, where a and b are integers.
You must show your working.

Not drawn accurately

