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1 Introduction

“A chord of an ellipse is a line segment joining two points on the ellipse. An ellipse E has
equation

x2

a2
`
y2

b2
“ 1.

The set of midpoints of the parallel chords of E with gradient m, where m is a constant, lie
on the straight line l. Find an equation of l.”

That, slightly paraphrased so that it can stand alone here, was question 8(c) of Edexcel’s
2015 Further Pure Mathematics 3 paper. It was worth six marks and prompted (a) the
usual flurry of complaints on social media that the examination was too hard and (b) the
inevitable ‘Hitler reacts to . . . ’ video on YouTube.

A WHSB student’s view as to whether this question was unfair turned largely on their ability
to solve it; after all, no one who comes out of the exam hall having solved a problem that
stumped both their local and national fellow students is likely to think that the question
was unfair.

Effectively, the question is asking about a locus of points connected with an ellipse and,
specifically, the diameter of an ellipse. (Yes, as we will see, it is not just circles that have
diameters.) The Mathematics department therefore put together these notes of some prop-
erties of the conic sections in order to round out your knowledge of the subject. The vast
majority of the content is not explicitly required by the specification but we think that all of
it is potentially fair game as far as applications of your existing knowledge is concerned.

2 Diameter

2.1 What is a diameter?

Close your eyes and picture a ‘diameter’. The chances are that you pictured a circle with a
line going through the centre in some way, as shown in Figure 1.
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Figure 1: diameter of a circle

Now define what a diameter is (closing your eyes is optional here). The chances are that you
came up with something along the lines of one of the following:

• a line joining two points on the circumference of the circle and that passes through the
centre of the circle

• the longest possible chord of the circle,

• sup t|x´ y| : x,y P circleu.

(Okay, well maybe not that last one although this is what we mean by the generalised
diameter of a closed figure in n-dimensional Euclidean space. And if you are not sure what
the sup function is then check out the appendix.)

Is there the equivalent of a ‘diameter’ for an ellipse? (Ellipses certainly have both a major
and a minor axis.) What about for a parabola? (A parabola is not even a closed curve so
could the concept of a diameter even make sense?) Or a hyperbola? (If there is such a thing
as the ‘diameter’ of an ellipse and a parabola, shouldn’t there be one for a hyperbola, even
if it does come in two pieces?)

2.2 Diameter of an ellipse

Suppose that we have an ellipse E with standard equation

x2

a2
`
y2

b2
“ 1.

Consider a set of parallel chords of gradient m for the ellipse: see Figure 2. Can we say
anything about the set of midpoints of these chords?
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x

y

Figure 2: chords of constant gradient for an ellipse

You would have to be pretty lacking in imagination (and probably blind) not to guess that
the midpoints of these chords all lie on a straight line, perhaps even a straight line that
passes through the origin — and they do. So let’s prove that this is the case.

Suppose that the chord has equation y “ mx`c. Let ApxA, yAq and BpxB, yBq be the points
where the chord intersects with the ellipse and MpxM , yMq be the midpoint of the chord.
Then we can find the intersection of the line and the ellipse as follows:

x2

a2
`
pmx` cq2

b2
“ 1 ñ b2x2 ` a2pmx` cq2 “ a2b2

ñ pa2m2
` b2qx2 ` 2a2cmx` a2pc2 ´ b2q “ 0.

xA and xB satisfy the quadratic equation above and, in particular,

xA ` xB “ ´
2a2cm

a2m2 ` b2

giving

xM “ 1
2
pxA ` xBq “ ´

a2cm

a2m2 ` b2

and

yM “ mxM ` c

“ ´
a2cm2

a2m2 ` b2
` c

“
´a2cm2 ` cpa2m2 ` b2q

a2m2 ` b2

“
b2c

a2m2 ` b2
.

So the locus of such midpoints is

b2x` a2my “ 0 or y “ ´
b2

a2m
x.

4
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2.3 Diameter of a parabola

Let us apply the same idea to the parabola, i.e., consider the locus of the midpoints of
parallel chords as shown in Figure 3.

x

y

Figure 3: chords of constant gradient for a parabola

Suppose that P is a parabola with standard equation y2 “ 4ax. Suppose that the chord has
equation y “ mx` c. Let ApxA, yAq and BpxB, yBq be the points where the chord intersects
with the parabola and MpxM , yMq be the midpoint of the chord. Then we can find the
intersection of the line and the parabola as follows:

y2 “ 4axñ y2 “ 4a
´y ´ c

m

¯

ñ y2 ´
4a

m
y `

4ac

m
.

Hence

yA ` yB “
4a

m
and so

yM “ 1
2
pyA ` yBq “

2a

m
.

Note that this is a constant and so the diameter is a straight line that is parallel to the
parabola’s axis.

2.4 Diameter of a hyperbola

Suppose that we have a hyperbola H with standard equation

x2

a2
´
y2

b2
“ 1.

5
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Consider a set of parallel chords of gradient m for the hyperbola: see Figure 4 for the case
where |m| ą b

a
and Figure 5 for the case where |m| ă b

a
. (Why is there no picture for the

case |m| “ b
a
?)

x

y y “ b
a
x

y “ ´ b
a
x

Figure 4: chords of constant gradient for a hyperbola, |m| ą b
a

x

y y “ b
a
x

y “ ´ b
a
x

Figure 5: chords of constant gradient for a hyperbola, |m| ă b
a

Suppose that the chord has equation y “ mx`c. Let ApxA, yAq and BpxB, yBq be the points
where the chord intersects with the hyperbola and MpxM , yMq be the midpoint of the chord.

6



Dr Oliver 
Mathematics 

 
Dr Oliver 

Mathematics 
 

Dr Oliver 
Mathematics 

 
Dr Oliver 

Mathematics 
 

Dr Oliver 
Mathematics 

 
Dr Oliver 

Mathematics 

Then we can find the intersection of the line and the hyperbola as follows:

x2

a2
´
pmx` cq2

b2
“ 1 ñ b2x2 ´ a2pmx` cq2 “ a2b2

ñ pb2 ´ a2m2
qx2 ´ 2a2cmx´ a2pb2 ` c2q “ 0.

xA and xB satisfy the quadratic equation above and, in particular,

xA ` xB “
2a2cm

b2 ´ a2m2

giving

xM “ 1
2
pxA ` xBq “

a2cm

b2 ´ a2m2

and

yM “ mxM ` c

“
a2cm2

b2 ´ a2m2
` c

“
a2cm2 ` cpb2 ´ a2m2q

b2 ´ a2m2

“
b2c

b2 ´ a2m2
.

So the locus of such midpoints is

b2x´ a2my “ 0 or y “
b2

a2m
x.

(Did you note that this is the same as for the ellipse, except for the sign? Spooky . . . )

2.5 Diameter of a circle

Does this approach hold for a circle?

On a personal level, I don’t think that it is a good idea to consider the circle as a degenerate
case of an ellipse. If you are the kind of person who does, can you explain why the circle has
eccentricity e “ 0 — the consequence of setting a “ b — whereas for an ellipse 0 ă e ă 1,
why we only have one focus and not two foci, and where the directrix comes into this?

I prefer to think of the circle as a fourth type of conic section rather than a case of the
ellipse where a “ b — Apollonius of Perga thought the same way and since it was he (in his
book The Conics) who named the ellipse, the parabola, and the hyperbola as well as doing
pioneering work on the conic sections I think I’m in good company.
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But you know, however, from GCSE that this approach does hold: the perpendicular bisector
of the chord passes through the centre of a circle, as shown in Figure 6.

Figure 6: perpendicular bisector of a chord of a circle

You can prove this with simple congruence arguments. It is also the way that you can find
the centre of a circle that passes through three non-concurrent points: find the point of
intersection of any two of the three perpendicular bisectors of the three points. Hence the
locus of midpoints of parallel chords of a circle all lie on a straight line that passes through
the centre of the circle.

2.6 Summary

The results can be summarised in Table 1 as follows.

Conic Standard equation Diameter for y “ mx` c

Ellipse
x2

a2
`
y2

b2
“ 1 y “ ´

b2

a2m
x

Parabola y2 “ 4ax y “
2a

m

Hyperbola
x2

a2
´
y2

b2
“ 1 y “

b2

a2m
x

Table 1: summary table

3 Chords

3.1 Focal chord of a parabola

Let P pap2, 2apq and Qpaq2, 2aqq be distinct points on the parabola y2 “ 4ax such that
the chord PQ passes through the focus Spa, 0q. The the tangent to the parabola at P is

8
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perpendicular to the tangent to the parabola at Q. Moreover, if T is the point of intersection
of the tangents, then T lies on the directrix x “ ´a and the line segment ST is perpendicular
to the chord PQ, as shown in Figure 7.

x

y

Figure 7: tangents from a focal chord of a parabola

The gradient of the chord PQ is

2aq ´ 2ap

aq2 ´ ap2
“

2apq ´ pq

apq ` pqpq ´ pq
“

2

q ` p
;

note that the denominator is zero if p “ ´q and that this happens only if the chord PQ is
vertical. Otherwise, the equation of the chord PQ is

y ´ 2aq “
2

q ` p
px´ aq2q.

Suppose that this chord passes through the focus of the parabola Spa, 0q. Then

´2aq “
2

q ` p
pa´ aq2q ñ ´2aq2 ´ 2apq “ 2a´ 2aq2

ñ pq “ ´1.

Now, recall how to derive the tangent to the curve:

y2 “ 4axñ 2y
dy

dx
“ 4añ

dy

dx
“

2a

y

and so the gradients at P and Q are 1
p

and 1
q

respectively. The product of these gradients
is

1

p
ˆ

1

q
“

1

pq
“ ´1,

and hence the tangents are perpendicular.

9
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The equations of the tangents are

tangent at P : y ´ 2ap “
1

p
px´ ap2q

tangent at Q : y ´ 2aq “
1

q
px´ aq2q,

and to find the point of intersection we simply subtract:

ñ ´ 2ap´ p´2aqq “
1

p
px´ ap2q ´

1

q
px´ aq2q

ñ 2apq ´ pq “
´

1
p
´ 1

q

¯

x´ ap` aq

ñ 2apq ´ pq “ q´p
pq
x` apq ´ pq

ñ 2a “ 1
pq
x` a (since p ‰ qq

ñ a “ ´x (since pq “ ´1q

ñ x “ ´a,

and so T lies on the directrix, as required.

Finally, the y-coordinate of T is given by

y “
1

p
p´a´ ap2q ` 2ap “

p´a` ap2q ` 2ap2

p
“
app2 ´ 1q

p
;

the expression that you get if you use the tangent at Q is identical since pq “ ´1. The
gradient of ST is

app2´1q
p

´ 0

´a´ a
“

1´ p2

2p
“
´pq ´ p2

2p
“
´ppp` qq

2p
“ ´

p` q

2
;

since the gradient of the chord PQ is 2
p`q

, ST and PQ are perpendicular.

3.2 Chord of an ellipse

Let Apa cos θ, b sin θq and Bpa cosφ, b sinφq be distinct points on the ellipse

x2

a2
`
y2

b2
“ 1.

The gradient of the chord AB is given by

b sin θ ´ b sinφ

a cos θ ´ a cosφ
“

2b cos
`

φ`θ
2

˘

sin
`

φ´θ
2

˘

´2a sin
`

φ`θ
2

˘

sin
`

φ´θ
2

˘ (using the factor formulae)

“ ´
b cos

`

φ`θ
2

˘

a sin
`

φ`θ
2

˘ .

10
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and hence the equation of the chord is

y ´ b sin θ “ ´
b cos

`

φ`θ
2

˘

a sin
`

φ`θ
2

˘px´ a cos θq

ñ ay sin
`

φ`θ
2

˘

cos θ ´ ab sin
`

φ`θ
2

˘

sin θ “ ´bx cos
`

φ`θ
2

˘

` ab cos
`

φ`θ
2

˘

cos θ

ñ bx cos
`

φ`θ
2

˘

` ay sin
`

φ`θ
2

˘

cos θ “ ab
“

cos
`

φ`θ
2

˘

cos θ ` sin
`

φ`θ
2

˘

sin θ
‰

ñ bx cos
`

φ`θ
2

˘

` ay sin
`

φ`θ
2

˘

cos θ “ ab cos
`

φ´θ
2

˘

,

and note that we simply need the appropriate sum and differences of the parameters θ and
φ to form the equation.

3.3 Focal chord of an ellipse

Suppose that PQ is a chord on the ellipse

x2

a2
`
y2

b2
“ 1

which passes through the focus Spae, 0q. Let T be the point where the tangent to the ellipse
at P and the tangent to the ellipse at Q meet. Then T lies on the directrix x “ a

e
of the

ellipse and the line segment ST is perpendicular to the chord PQ.

Suppose that P pa cos θ, b sin θq and Qpa cosφ, b sinφq be distinct points on the ellipse and that
the chord PQ passes through the focus Spae, 0q. The equations of the tangents are

tangent at P : bx cos θ ` ay sin θ “ abñ bx cos θ sinφ` ay sin θ sinφ “ ab sinφ

tangent at Q : bx cosφ` ay sinφ “ abñ bx cosφ sin θ ` ay sinφ sin θ “ ab sin θ,

and to find their point of intersection we just need to subtract:

bxpcos θ sinφ´ cosφ sin θq “ abpsinφ´ sin θq

ñ x sinpφ´ θq “ apsinφ´ sin θq

ñ x “
apsinφ´ sin θq

sinpφ´ θq
.

Now the chord PQ has equation

y ´ b sin θ “
b sin θ ´ b sinφ

a cos θ ´ a cosφ
px´ a cos θq.

Since this passes through the focus Spae, 0q,

´ b sin θ “
b sin θ ´ b sinφ

a cos θ ´ a cosφ
pae´ a cos θq

ñ ´ sin θ cos θ ` sin θ cosφ “ e sin θ ´ sin θ cos θ ´ e sinφ` sinφ cos θ

ñ sin θ cosφ´ sinφ cos θ “ e sin θ ´ e sinφ

ñ sinpθ ´ φq “ epsin θ ´ sinφq,

11
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and hence the x-coordinate of T , the point of intersection of the tangents is a
e

and so the
tangents meet on the directrix, as required.

Finally, the y-coordinate of T is given by

ab
e

cos θ ` ay sin θ “ abñ b cos θ ` aey sin θ “ be

ñ aey sin θ “ bpe´ cos θq

ñ y “
bpe´ cos θq

ae sin θ
.

3.4 Focal chord of a hyperbola

Suppose that P pa sec p, b tan pq and Qpa sec q, b tan qq are points on different branches of the
hyperbola

x2

a2
´
y2

b2
“ 1

such that the chord PQ, when extended, passes through the focus Spae, 0q. Let T be the
point where the tangent to the hyperbola at P and the tangent to the hyperbola at Q meet.
Then T lies on the directrix x “ a

e
of the hyperbola and the line segment ST is perpendicular

to the chord PQ.

The equations of the tangents are

tangent at P : ay sinh p` ab “ bx cosh pñ ay sinh p sinh q ` ab sinh q “ bx cosh p sinh q

tangent at Q : ay sinh q ` ab “ bx cosh q ñ ay sinh q sinh p` ab sinh p “ bx cosh q sinh p,

and to find the point of intersection we just need to subtract:

ab sinh q ´ ab sinh p “ bx cosh p sinh q ´ bx cosh qsinhp

ñ apsinh q ´ sinh pq “ xpcosh p sinh q ´ cosh qsinhpq

ñ apsinh q ´ sinh pq “ x sinhpq ´ pq

ñ x “
apsinh q ´ sinh pq

sinhpq ´ pq
.

Now the chord PQ has equation

y ´ b sinh p “
b sinh p´ b sinh q

a cosh p´ a cosh q
px´ a cosh tq.

12
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Since this passes through the focus pae, 0q,

´ b sinh p “
b sinh p´ b sinh q

a cosh p´ a cosh q
pae´ a cosh pq

ñ ´ ab sinh ppcosh p´ cosh qq “ abpsinh p´ sinh qqpe´ cosh pq

ñ ´ sinh ppcosh p´ cosh qq “ psinh p´ sinh qqpe´ cosh pq

ñ ´ sinh p cosh p` sinh p cosh q “ epsinh p´ sinh qq ´ sinh p cosh p` sinh q cosh q

ñ sinh p cosh q ´ sinh q cosh q “ epsinh p´ sinh qq

ñ sinhpp´ qq “ epsinh p´ sinh qq,

and hence the x-coordinate of T , the point of intersection of the tangents is a
e

and so the
tangents meet on the directrix, as required.

4 Focal properties

4.1 Focal property of a parabola

If a ray of light is parallel to the axis of the parabola then it will be reflected to the focus,
as shown in Figure 8.

x

y

Figure 8: focal property of a parabola

Conversely, a source of light positioned at the focus will produce a beam of light that travels
parallel to the parabola’s axis.

Let P pat2, 2atq be a point on the parabola y2 “ 4ax with focus Spa, 0q. Suppose that the
normal to the parabola at P cuts the x-axis at N : then it will suffice to show that PN
bisects the angle QP̂S, as shown in Figure 9.

13
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x

y

Q

NApat2, 0q

P pat2, 2atq

Spa, 0q

θ

αβ

Figure 9: normal to the parabola

The equation of the normal at P has equation

tx` y “ at3 ` 2at;

hence the gradient of the line is ´t and so tanα “ ´t. Next,

tan θ “ tanpπ ´ αq “ ´ tanα “ t.

In addition, by considering triangle PAS ,

tan β “
2at

at2 ´ a
“

2t

t2 ´ 1
.

Finally,

tanQP̂S “ tanpπ ´ βq “ ´ tan β “
2t

1´ t2
“ tan 2θ.

Hence QP̂S “ 2QP̂N and so PN bisects QP̂S, as required.

4.2 Focal property of an ellipse

If a ray of light is emitted from one focus then it will be reflected off the ellipse to the other
focus, as shown in Figure 10.

x

y

Figure 10: focal property of an ellipse

14
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Note, that since all of the four paths shown are precisely the same lengths, light rays emitted
from one focus will all arrive at the other focus at exactly the same time.

In order to prove this result, it will suffice to show that the normal at the perimeter of the
ellipse bisects the angle as this establishes that the angle of incidence is equal to the angle
of reflection.

Let P pa cos t, b sin tq be a point on the ellipse

x2

a2
`
y2

b2
“ 1

and let Ap´ae, 0q and Bpae, 0q be the two foci. The normal to the ellipse at P is

ax sin t´ by cos t “ pa2 ´ b2q sin t cos t

(this is a standard result that you should be able to derive both quickly and correctly) and,
since a2 ´ b2 “ a2e2, this crosses the x-axis at the point Cpe2 cos t, 0q; this is summarised in
Figure 11.

P pa cos t, b sin tq

Ap´ae, 0q Bpae, 0qCpe2 cos t, 0q

φ θ

απ ´ α

Figure 11: the normal to the ellipse

PB2
“ pae´ a cos tq2 ` pb sin tq2

“ a2e2 ´ 2a2e cos t` a2 cos2 t` b2 sin2 t

“ a2e2 ´ 2a2e cos t` pa2 ´ b2q cos2 t` b2 cos2 t` b2 sin2 t

“ a2e2 ´ 2a2e cos t` pa2 ´ b2q cos2 t` b2

“ a2e2 cos2 t´ 2a2e cos t` a2

“ a2pe2 cos2 t´ 2e cos t` 1q

“ a2pe cos t´ 1q2,

and hence PB “ ap1´ e cos tq. Since AP ` PB “ 2a, this gives PA “ ap1` e cos tq.
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We now apply the sine rule to triangle APC :

sinφ “
AC sinpπ ´ αq

AP

“
pae` e2 cos tq ˆ sinα

ap1` e cos tq

“ e sinα.

We now apply the sine rule to triangle CPB :

sin θ “
BC sinα

PB

“
pae´ e2 cos tq sinα

ap1´ e cos tq

“ e sinα.

So sinφ “ sin θ and, since the angles cannot be supplementary, φ “ θ.

4.3 Focal property of a hyperbola

If a ray is directed at one focus of a hyperbola but strikes the other branch of the hyperbola
first then the ray will be reflected to the other focus, as shown in Figure 12.

x

y

Figure 12: focal property of the hyperbola

In order to prove this result, it will suffice to show that the tangent at the perimeter of the
hyperbola bisects the angle as this establishes that the angle of incidence is equal to the
angle of reflection.
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Let P pa sec t, b tan tq be a point on the hyperbola

x2

a2
´
y2

b2
“ 1

and let Ap´ae, 0q and Bpae, 0q be the two foci. (Note: this means that the proof is valid for
only the right-hand branch of the parabola but you can repeat the argument with the point
p´a sec t, b tan tq for the other branch.) The tangent to the hyperbola at P is

bx sec t´ ay tan t “ ab

and this crosses the x-axis at the point Cpa cos t, 0q; this is summarised in Figure 13.

P pa sec t, b tan tq

Ap´ae, 0q Bpae, 0qCpa cos t, 0q

φ θ

απ ´ α

Figure 13: the tangent to the hyperbola

PB2
“ pae´ a sec tq2 ` pb tan tq2

“ a2e2 ´ 2a2e sec t` a2 sec2 t` b2 tan2 t

“ a2e2 ´ 2a2e sec t` a2 sec2 t` b2psec2 t´ 1q

“ pa2e2 ´ b2q ´ 2a2e sec t` pa2 ` b2q sec2 t

“ a2 ´ 2a2e sec t` a2e2 sec2 t

“ a2p1´ 2e sec t` e2 sec2 tq

“ a2p1´ e sec tq2,

and hence PB “ ape sec t´ 1q. Since |AP ´ PB| “ 2a, this gives PA “ ape sec t` 1q.

We now apply the sine rule to triangle APC :

sinφ “
AC sinpπ ´ αq

AP

“
pae` a cos tq ˆ sinα

ape sec t` 1q

“
pe` cos tq sinα

e sec t` 1
.
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We now apply the sine rule to triangle CPB :

sin θ “
BC sinα

PB

“
pae´ a cos tq sinα

ape sec t´ 1q

“
pe´ cos tq sinα

e sec t´ 1

Unlike in the case of the ellipse we are not quite finished: we need to show that

e` cos t

e sec t` 1
“

e´ cos t

e sec t´ 1

in order to establish that the two angles have the same sine. To do this, simply divide one
by the other:

e` cos t

e sec t` 1
˜

e´ cos t

e sec t´ 1
“

e` cos t

e sec t` 1
ˆ
e sec t´ 1

e´ cos t

“
e2 sec t´ e` e´ cos t

e2 sec t´ e` e´ cos t

“ 1.

So sinφ “ sin θ and, since the angles cannot be supplementary, φ “ θ.

5 Tangent property of a hyperbola

Suppose that the tangent to a hyperbola at the point P cuts the asymptotes are the points
A and B, as shown in Figure 14. Then PA “ PB.

x

y y “ b
a
x

y “ ´ b
a
x

B

A

P

Figure 14: tangent to a hyperbola
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Suppose that P pa sec θ, b tan θq is a point on the hyperbola

x2

a2
´
y2

b2
“ 1.

Then the equation of the tangent is

bx sec θ ´ ay tan θ “ ab.

If A is the point of intersection between the tangent and the asymptote y “ b
a
x then the

x-coordinate of A is given by

bxA sec θ ´ a

ˆ

b

a
xA

˙

tan θ “ abñ bxA sec θ ´ bxA tan θ “ ab

ñ bxApsec θ ´ tan θq “ ab

ñ xA “
a

sec θ ´ tan θ
.

In the same way, if B is the point of intersection between the tangent and the asymptote
y “ b

a
x then the x-coordinate of B is given by

bxB sec θ ´ a

ˆ

´
b

a
xB

˙

tan θ “ abñ bxB sec θ ` bxB tan θ “ ab

ñ bxBpsec θ ` tan θq “ ab

ñ xB “
a

sec θ ` tan θ
.

So the x-coordinate of the midpoint of AB is given by

1
2
pxA ` xBq “

1
2

„

a

sec θ ´ tan θ
`

a

sec θ ` tan θ



“
apsec θ ` tan θq ` apsec θ ´ tan θq

2psec2 θ ´ tan2 θq

“ a sec θ,

and this is simply the x-coordinate of P . Hence P is the midpoint of AB , as required.

6 Arc length

6.1 Arc length of a parabola

What is the length of the parabola y “ x2 between the points p0, 0q and p1, 1q?

y “ x2 ñ
dy

dx
“ 2xñ

d

1`

ˆ

dy

dx

˙2

“
a

1` p2xq2 “
?

1` 4x2
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and hence the arc length l is given by

l “

ż 1

0

?
1` 4x2 dx.

As is so often the case, a relatively simple function will give rise to a very complicated
integral for its arc length. There are three standard methods of solving the problem:

(a) use the substitution θ “ arctan 2x,

(b) use the substitution t “ arsinh 2x,

(c) use integration by parts.

We will derive the result in each of these three ways.

(a) θ “ arctan 2xñ x “ 1
2

tan θ and so
?

1` 4x2 “
a

1` tan2 θ “ sec θ;

note that we do not need to worry about signs here: the function arctan θ is defined on
the interval ´π

2
ă θ ă π

2
and, since cos θ is always positive in this interval, sec θ is also

positive.
dx

dθ
“ 1

2
sec2 uñ dθ “ 1

2
sec2 θ dθ.

We also need to change the limits:

x “ 0 ñ θ “ 0 and x “ 1 ñ θ “ arctan 2.

Hence

l “

ż 1

0

?
1` 4x2 dx

“ 1
2

ż arctan 2

0

sec3 θ dθ

“ 1
2

ż arctan 2

0

sec θ sec2 θ dθ

and we now use integration by parts:

u “ sec θ ñ
du

dθ
“ sec θ tan θ and

dv

dθ
“ sec2 θ ñ v “ tan θ.

Hence

l “ 1
2
rsec θ tan θsarctan 2

θ“0 ´ 1
2

ż arctan 2

0

sec θ tan2 θ dθ

“ 1
2
rsec θ tan θsarctan 2

θ“0 ´ 1
2

ż arctan 2

0

sec θpsec2 θ ´ 1q dθ

“ 1
2
rsec θ tan θsarctan 2

θ“0 ´ l ` 1
2

ż arctan 2

0

sec θ dθ
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and hence
2l “ 1

2
rsec θ tan θ ` ln |sec θ ` tan θ|sarctan 2

θ“0 ;

hence
l “ 1

4
rsec θ tan θ ` ln |sec θ ` tan θ|sarctan 2

θ“0 .

Now,
sec2 θ “ 1` tan2 θ ñ secparctan 2q “

?
5;

as explained above there is no need to worry about signs here. Hence

l “ 1
4

”

2
?

5` ln
´?

5` 2
¯ı

.

(b) t “ arsinh 2xñ x “ 1
2

sinh t and so

?
1` 4x2 “

a

1` sinh2 t “ cosh t,

and, again, we do not need to worry about signs (why?).

dx

dt
“ 1

2
cosh tñ dx “ 1

2
cosh t dt.

We also need to change the limits:

x “ 0 ñ t “ 0 and x “ 1 ñ t “ arsinh 2.

Hence

l “

ż 1

0

?
1` 4x2 dx

“ 1
2

ż arsinh 2

0

cosh2 t dt

“ 1
4

ż arsinh 2

0

p1` cosh 2tq dt

“ 1
4

“

t` 1
2

sinh 2t
‰arsinh 2

t“0
.

Now arsinh 2 “ lnp2`
?

5q and

sinh 2t “ 2 sinh t cosh t “ 2 sinh t
a

1` sinh2 t

to give sinh 2parsinh 2q “ 2ˆ 2ˆ
?

5 “ 4
?

5. Hence

l “ 1
4

”

lnp2`
?

5q ` 2
?

5
ı

.
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(c)

u “
?

1` 4x2 ñ
du

dx
“

4x
?

1` 4x2
and

dv

dx
“ 1 ñ v “ x

gives

ż 1

0

?
1` 4x2 dx “

”

x
?

1` 4x2
ı1

x“0
´

ż 1

0

4x2
?

1` 4x2
dx

“ p
?

5´ 0q ´

ż 1

0

p1` 4x2q ´ 1
?

1` 4x2
dx

“
?

5´

ż 1

0

?
1` 4x2 dx`

ż 1

0

1
?

1` 4x2
dx

so

2

ż 1

0

?
1` 4x2 dx “

?
5`

ż 1

0

1
?

1` 4x2
dx

“
?

5`
“

1
2

arsinh 2x
‰1

x“0

“
?

5` 1
2

lnp2`
?

5q,

and dividing by two will now give the answer as before:

l “ 1
2

?
5` 1

4
lnp2`

?
5q.

6.2 Arc length of an ellipse

Let P pa cos θ, b sin θq be a point on the ellipse

x2

a2
`
y2

b2
“ 1.

Then
d

ˆ

dx

dθ

˙2

`

ˆ

dy

dθ

˙2

“
a

p´a sin θq2 ` pb cos θq2

and so the integral that we need for the arc length has the form

ż

a

a2 sin2 θ ` b2 cos2 θ dθ.

How hard can this be? Well, pretty tough, in fact. This is an example of what is called an
incomplete elliptic integral of the second kind and there is no antiderivative with a simple
closed form. (You could easily get a degree in Mathematics without ever coming across ways
of trying to tackle such integrals.)
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6.3 Arc length of a hyperbola

Surely this case is easier than that of an ellipse? After all, we know a lot about the function
y “ 1

x
and we specifically created the natural logarithm in order to find the area under the

curve so how hard can it be? So what is the arc length between p1, 1q and p2, 1
2
q?

y “
1

x
ñ

dy

dx
“ ´

1

x2
ñ

d

1`

ˆ

dy

dx

˙2

“

c

1`
1

x4

and so the arc length l is given by

l “

ż 2

1

c

1`
1

x4
dx.

Although your calculator will give you a very good numerical approximation to this integral
(mine gives 1.132 090 039 3 (FCD) in a matter of moments) this is another integral that
simply cannot be done using your existing skills.

7 Polar coordinates

In order to get a neat expression for the polar equation of a conic section we make a change
to the usual set up: consider the fixed point to be the origin p0, 0q and the fixed line to be
x “ ´a, as shown in Figure 15.

P px, yq

Sp0, 0qq

Np´a, yq

x

y

Figure 15: the standard set-up for the polar form of a conic section

Using the standard set up, if the conic has eccentricity e, then

PS “ ePN ñ r “ epr cos θ ` aq

ñ r “ er cos θ ` ae

ñ r ´ er cos θ “ ae

ñ rp1´ e cos θq “ ae

ñ r “
ae

1´ e cos θ
.
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Hence every equation of the form

r “
k

1´ e cos θ
,

where e ą 0, k ą 0 describes a conic section of eccentricity e and a focus at the origin. It is
possible to recast the derivation show that

r “
k

1` e cos θ
(using x “ aq,

r “
k

1´ e sin θ
(using y “ aq, and

r “
k

1` e sin θ
(using y “ ´aq

also describe conic sections with a focus at the origin.

8 Appendix

8.1 Roots of a quadratic

Consider the quadratic equation ax2`bx`c “ 0 where a ‰ 0. The solutions to this equation,
x1 and x2, are given by

x1 “
´b`

?
b2 ´ 4ac

2a
and x2 “

´b´
?
b2 ´ 4ac

2a
.

Then

x1 ` x2 “
´b`

?
b2 ´ 4ac

2a
`
´b´

?
b2 ´ 4ac

2a
“ ´

b

a
.

If x “ 3 and x “ 4 are the roots of a quadratic expression, then the factor theorem tells us
that px ´ 3q and px ´ 4q are factors of the quadratic and so the quadratic must be a scalar
mutliple of

px´ 3qpx´ 4q “ x2 ´ p3` 4qx` p3ˆ 4q “ x2 ´ 7x` 12.

In general, α and β are roots of a quadratic equation if and only if the quadratic is a scalar
multiple of

x2 ´ pα ` βqx` αβ “ 0;

so the sum of the roots is the negative of the coefficient of x and the product of the roots is
the constant term (which is, if you recall, how you learned to factorise simple quadratics in
Year 9).
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8.2 Supremum

The third suggested definition of a diameter was

sup t|x´ y| : x,y P circleu .

What is this?

The supremum function — sup — is used when we want to find the maximum value of a set
of numbers but in circumstances where there may not be a maximum. For example, consider
the set of numbers tx P R : 0 ď x ă 1u. What is the maximum value to be found in this set?
Well, it is not 0.97, since 0.98 is bigger. It’s not 0.999 999 since 0.999 999 999 is bigger. And
it’s certainly not 0. 99 “ 0.999 999 999 . . . since this is equal to 1 and hence is not a member
of the set. So there is no maximum value.

The supremum gets us out of this difficulty. What it does is take the least upper bound that
works. So, in this example, 16 is an upper bound for the maximum value (just not a very
good one). 2 is a better upper bound. 1.04 is a better upper bound. 1 is an even better
upper bound. But no number smaller than 1 can function as an upper bound. Hence

max tx P R : 0 ď x ă 1u does not exist

but
sup tx P R : 0 ď x ă 1u “ 1.

There is a corresponding function, called the infimum (inf), which acts as a greatest lower
bound.

8.3 Closed-form expressions

In mathematics we break the types of expressions that we use into a variety of categories,
depending on their complexity, whether they can be completed in finitely many step, involve
limits, and so on. There is no universal agreement as to where the boundaries of these
categories are drawn but Table 2 will give at least some sense of where plausible boundaries
exist.
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