Dr Oliver Mathematics
 Advance Level Mathematics Core Mathematics 1: Non-Calculator 1 hour 30 minutes

The total number of marks available is 75 .
You must write down all the stages in your working.

1. (a) Simplify

$$
\begin{equation*}
\sqrt{48}-\frac{6}{\sqrt{3}} \tag{2}
\end{equation*}
$$

Write your answer in the form $a \sqrt{3}$, where a is an integer to be found.

Solution

$$
\begin{aligned}
\sqrt{48}-\frac{6}{\sqrt{3}} & =\sqrt{16 \times 3}-\frac{2 \times 3}{\sqrt{3}} \\
& =\sqrt{16} \times \sqrt{3}-\frac{2 \times 3}{\sqrt{3}} \\
& =4 \sqrt{3}-2 \sqrt{3} \\
& =\underline{\underline{2 \sqrt{3}}} .
\end{aligned}
$$

(b) Solve the equation

$$
\begin{equation*}
3^{6 x-3}=81 \tag{3}
\end{equation*}
$$

Write your answer as a rational number.

Solution

$$
\begin{aligned}
3^{6 x-3}=81 & \Rightarrow 3^{6 x-3}=3^{4} \\
& \Rightarrow 6 x-3=4 \\
& \Rightarrow 6 x=7 \\
& \Rightarrow x=\frac{7}{6}
\end{aligned}
$$

2. Given

$$
y=3 \sqrt{x}-6 x+4, x>0
$$

(a) find $\int y \mathrm{~d} x$, simplifying each term.

Solution

$$
\begin{aligned}
\int(3 \sqrt{x}-6 x+4) \mathrm{d} x & =\int\left(3 x^{\frac{1}{2}}-6 x+4\right) \mathrm{d} x \\
& =\underline{\underline{2 x^{\frac{3}{2}}}-3 x^{2}+4 x+c} .
\end{aligned}
$$

(b) (i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.

Solution

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(3 x^{\frac{1}{2}}-6 x+4\right)=\underline{\underline{\frac{3}{2}} x^{-\frac{1}{2}}-6} .
$$

(ii) Hence find the value of x such that $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$.

Solution

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x}=0 & \Rightarrow \frac{3}{2} x^{-\frac{1}{2}}-6=0 \\
& \Rightarrow \frac{3}{2} x^{-\frac{1}{2}}=6 \\
& \Rightarrow x^{-\frac{1}{2}}=4 \\
& \Rightarrow x^{\frac{1}{2}}=\frac{1}{4} \\
& \Rightarrow x=\frac{1}{16} .
\end{aligned}
$$

3.

$$
\begin{equation*}
\mathrm{f}(x)=x^{2}-10 x+23 \tag{2}
\end{equation*}
$$

(a) Express $\mathrm{f}(x)$ in the form
where a and b are constants to be found.

Solution

$$
\begin{aligned}
x^{2}-10 x+23 & =\left(x^{2}-10 x+25\right)-2 \\
& =\underline{\underline{(x-5)^{2}-2}} ;
\end{aligned}
$$

hence, $\underline{\underline{a=-5}}$ and $\underline{\underline{b=-2}}$.
(b) Hence, or otherwise, find the exact solutions to the equation

$$
\begin{equation*}
x^{2}-10 x+23=0 \tag{2}
\end{equation*}
$$

Solution

$$
\begin{aligned}
x^{2}-10 x+23=0 & \Rightarrow(x-5)^{2}-2=0 \\
& \Rightarrow(x-5)^{2}=2 \\
& \Rightarrow x-5= \pm \sqrt{2} \\
& \Rightarrow x=5 \pm \sqrt{2} .
\end{aligned}
$$

(c) Use your answer to part (b) to find the larger solution to the equation

$$
y-10 y^{0.5}+23=0
$$

Write your solution in the form $p+q \sqrt{r}$, where p, q, and r are integers.

Solution

$$
\begin{aligned}
(5+\sqrt{2})^{2} & =25+10 \sqrt{2}+2 \\
& =\underline{\underline{27+10 \sqrt{2}}} ;
\end{aligned}
$$

hence, $\underline{\underline{p=27}}, \underline{\underline{p=10}}$, and $\underline{\underline{r=2}}$.
4. Each year, Andy pays into a savings scheme. In year one he pays in $£ 600$. His payments increase by $£ 120$ each year so that he pays $£ 720$ in year two, $£ 840$ in year three and so on, so that his payments form an arithmetic sequence.
(a) Find out how much Andy pays into the savings scheme in year ten.

Solution

$a=600$ and $d=120$:

$$
\text { Year } \begin{aligned}
10 & =600+9 \times 120 \\
& =600+1080 \\
& =£ 1680 .
\end{aligned}
$$

Kim starts paying money into a different savings scheme at the same time as Andy. In year one she pays in $£ 130$. Her payments increase each year so that she pays $£ 210$ in year two, $£ 290$ in year three and so on, so that her payments form a different arithmetic sequence.

At the end of year N, Andy has paid, in total, twice as much money into his savings scheme as Kim has paid, in total, into her savings scheme.
(b) Find the value of N.

Solution

$$
\begin{aligned}
& \frac{1}{2} N[2 \times 600+120(N-1)]=2 \times \frac{1}{2} N[2 \times 130+80(N-1)] \\
\Rightarrow & 600 N+60 N(N-1)=260 N+80 N(N-1) \\
\Rightarrow & 600 N+60 N^{2}-60 N=260 N+80 N^{2}-80 N \\
\Rightarrow & 540 N+60 N^{2}=180 N+80 N^{2} \\
\Rightarrow & 20 N^{2}-360 N=0 \\
\Rightarrow & 20 N(N-18)=0 \\
\Rightarrow & N=0 \text { or } N=18 \text { years. }
\end{aligned}
$$

5. Figure 1 shows the sketch of a curve with equation $y=\mathrm{f}(x), x \in \mathbb{R}$.

Figure 1: $y=\mathrm{f}(x), x \in \mathbb{R}$

The curve crosses the y-axis at $(0,4)$ and crosses the x-axis at $(5,0)$.
The curve has a single turning point, a maximum, at $(2,7)$.
The line with equation $y=1$ is the only asymptote to the curve.
(a) State the coordinates of the turning point on the curve with equation $y=\mathrm{f}(x-2)$.

Solution

$\underline{\underline{(4,7)}}$.
(b) State the solution of the equation $\mathrm{f}(2 x)=0$.

Solution

$\underline{\underline{x=\frac{5}{2}}}$.
(c) State the equation of the asymptote to the curve with equation $y=\mathrm{f}(-x)$.

Solution
Rotate it in the y-direction: $\underline{\underline{y=1}}$.

Given that the line with equation $y=k$, where k is a constant, meets the curve $y=\mathrm{f}(x)$ at only one point,
(d) state the set of possible values for k.

Solution

$\underline{\underline{k \leqslant 1}}$ or $\underline{\underline{k=7}}$.
6. A sequence $a_{1}, a_{2}, a_{3}, \ldots$ is defined by

$$
\begin{align*}
a_{1} & =4 \\
a_{n+1} & =\frac{a_{n}}{a_{n}+1}, n \geqslant 1, n \in \mathbb{N} . \tag{3}
\end{align*}
$$

(a) Find the values of a_{2}, a_{3}, and a_{4}.

Write your answers as simplified fractions.

Solution

a_{2}	$=\frac{4}{4+1}=\frac{4}{\underline{5}}$.
a_{3}	$=\frac{\frac{4}{5}}{\frac{4}{5}+1}$
	$=\frac{\frac{4}{5}}{\frac{9}{5}}$
	$=\frac{4}{\underline{9}}$.
a_{3}	$=\frac{\frac{4}{9}}{\frac{4}{9}+1}$
	$=\frac{\frac{4}{9}}{\frac{13}{9}}$
	$=\frac{4}{13}$.
$\underline{\underline{13}}$	

Given that

$$
a_{n}=\frac{4}{p n+q},
$$

where p and q are constants,
(b) state the value of p and the value of q.

Solution

Compare the bottom lines of a_{2} and a_{3} :

$$
2 p+q=5 \text { and } 3 p+q=9
$$

Subtract:

$$
p=4 \text { and } q=-3 .
$$

(c) Hence calculate the value of N such that $a_{N}=\frac{4}{321}$.

Solution

$$
\begin{aligned}
4 N-3=321 & \Rightarrow 4 N=324 \\
& \Rightarrow \underline{\underline{N=81}} .
\end{aligned}
$$

7. The equation

$$
20 x^{2}=4 k x-13 k x^{2}+2,
$$

where k is a constant, has no real roots.
(a) Show that k satisfies the inequality

$$
\begin{equation*}
2 k^{2}+13 k+20<0 . \tag{4}
\end{equation*}
$$

Solution

$$
20 x^{2}=4 k x-13 k x^{2}+2 \Rightarrow(20+13 k) x^{2}-4 k x-2=0 .
$$

Now, ' $b^{2}-4 a c<0$ ':

$$
\begin{aligned}
& (-4 k)^{2}-4 \times(20+13 k) \times(-2)<0 \\
\Rightarrow & 16 k^{2}+8(20+13 k)<0 \\
\Rightarrow & 16 k^{2}+104 k+160<0 \\
\Rightarrow & 2 k^{2}+13 k+20<0,
\end{aligned}
$$

as required.
(b) Find the set of possible values for k.

Solution

$$
\left.\begin{array}{l}
\left.\quad \begin{array}{l}
\text { add to: } \\
\text { multiply to: }(+2)
\end{array}\right) \times(+20)=+40
\end{array}\right\}+5,+80 \text {. } \begin{aligned}
2 k^{2}+13 k+20<0 & \Rightarrow 2 k^{2}+5 k+8 k+20<0 \\
& \Rightarrow k(2 k+5)+4(2 k+5)<0 \\
& \Rightarrow(2 k+5)(k+4)<0 \\
& \Rightarrow-4<k<-\frac{5}{2} .
\end{aligned}
$$

8. Figure 2 shows the straight line l_{1} with equation $4 y=5 x+12$.

Figure 2: two straight lines
(a) State the gradient of l_{1}.

Solution

$$
4 y=5 x+12 \Rightarrow y=\frac{5}{4} x+3
$$

so the gradient is $\frac{5}{\underline{4}}$.

The line l_{2} is parallel to l_{1} and passes through the point $E(12,5)$, as shown in Figure 2.
(b) Find the equation of l_{2}. Write your answer in the form $y=m x+c$, where m and c are constants to be determined.

Solution

$$
\begin{aligned}
y-5=\frac{5}{4}(x-12) & \Rightarrow y-5=\frac{5}{4} x-15 \\
& \Rightarrow y=\frac{5}{4} x-10 .
\end{aligned}
$$

The line l_{2} cuts the x-axis at the point C and the y-axis at the point B.
(c) Find the coordinates of
(i) the point B,

Solution
$\underline{B(0,-10)}$.
(ii) the point C.

Solution

$$
\begin{aligned}
y=0 & \Rightarrow \frac{5}{4} x-10=0 \\
& \Rightarrow \frac{5}{4} x=10 \\
& \Rightarrow \frac{1}{4} x=2 \\
& \Rightarrow x=8,
\end{aligned}
$$

and $\underline{\underline{C(8,0)}}$.

The line l_{1} cuts the y-axis at the point A.
The point D lies on l_{1} such that $A B C D$ is a parallelogram, as shown in Figure 2.
(d) Find the area of $A B C D$.

Solution

$$
\begin{aligned}
\text { Area } & =8 \times\left(\frac{5}{4} \times 8+3\right) \\
& =8 \times(10+3) \\
& =8 \times 13 \\
& =\underline{\underline{104} \text { units }^{2}} .
\end{aligned}
$$

9. The curve C has equation $y=\mathrm{f}(x)$, where

$$
\mathrm{f}^{\prime}(x)=(x-3)(3 x+5)
$$

Given that the point $P(1,20)$ lies on C,
(a) find $\mathrm{f}(x)$, simplifying each term.

Solution

$$
\begin{aligned}
\mathrm{f}^{\prime}(x)=(x-3)(3 x+5) & \Rightarrow \mathrm{f}^{\prime}(x)=3 x^{2}-4 x-15 \\
& \Rightarrow \underline{\underline{\mathrm{f}(x)=x^{3}-2 x^{2}-15 x+c}}
\end{aligned}
$$

(b) Show that

$$
\mathrm{f}(x)=(x-3)^{2}(x+A)
$$

where A is a constant to be found.

Solution

Now, $P(1,20)$ lies on C so

$$
20=1-2-15+c \Rightarrow c=36
$$

and

$$
\mathrm{f}(x)=x^{3}-2 x^{2}-15 x+36
$$

Well, we can do a bit synthetic division (twice):

3	1	-2	-15	36
	\downarrow	3	3	-36
	1	1	-12	0

3	1	1	-12
	\downarrow	3	12
	1	4	0

So,

$$
\begin{aligned}
\mathrm{f}(x) & =(x-3)(x-3)(x+4) \\
& =\underline{\underline{(x-3)^{2}(x+4)} ;}
\end{aligned}
$$

hence, $\underline{\underline{A=4}}$.
(c) Sketch the graph of C. Show clearly the coordinates of the points where C cuts or meets the x-axis and where C cuts the y-axis.

Solution

10. Figure 3 shows a sketch of part of the curve C with equation

$$
y=\frac{1}{2} x+\frac{27}{x}-12, x>0
$$

Figure 3: $y=\frac{1}{2} x+\frac{27}{x}-12, x>0$

The point A lies on C and has coordinates $\left(3,-\frac{3}{2}\right)$.
(a) Show that the equation of the normal to C at A can be written as

$$
\begin{equation*}
10 y=4 x-27 \tag{5}
\end{equation*}
$$

Solution

$$
\begin{aligned}
y=\frac{1}{2} x+\frac{27}{x}-12 & \Rightarrow y=\frac{1}{2} x+27 x^{-1}-12 \\
& \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{2}-27 x^{-2} .
\end{aligned}
$$

At $x=3$,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2}-3=-\frac{5}{2}
$$

and the gradient of the normal is $\frac{2}{5}$. Finally, the equation of the normal is

$$
\begin{aligned}
y+\frac{3}{2}=\frac{2}{5}(x-3) & \Rightarrow 10 y+15=4(x-3) \\
& \Rightarrow 10 y+15=4 x-12 \\
& \Rightarrow \underline{10 y=4 x-27,}
\end{aligned}
$$

as required.

The normal to C at A meets C again at the point B, as shown in Figure 3.
(b) Use algebra to find the coordinates of B.

Solution

$$
10 y=4 x-27 \Rightarrow y=\frac{4 x-27}{10}
$$

and

$$
\begin{aligned}
& \frac{1}{2} x+\frac{27}{x}-12=\frac{4 x-27}{10} \\
\times(10 x) \Rightarrow & 5 x^{2}+270-120 x=4 x^{2}-27 x \\
\Rightarrow & x^{2}-93 x+270=0
\end{aligned}
$$

$\left.\begin{array}{lc}\text { add to: } & -93 \\ \text { multiply to: } & (+1) \times(+270)=+270\end{array}\right\}-90,-3$

$$
\begin{aligned}
& \Rightarrow \quad(x-3)(x-90)=0 \\
& \Rightarrow \quad x=3 \text { or } x=90 .
\end{aligned}
$$

Finally,

$$
x=90 \Rightarrow y=\frac{2}{5} \times 90-\frac{27}{10}=33.3
$$

hence, $B(90,33.3)$.

