Dr Oliver Mathematics
 Applied Mathematics: Mechanics or Statistics Section B
 2008 Paper
 1 hour

The total number of marks available is 32 .
You must write down all the stages in your working.

1. Given that $\mathbf{A}, \mathbf{B}, \mathbf{C}$, and \mathbf{D} are square matrices where:

$$
\mathbf{A}=\left(\begin{array}{cc}
2 & -1 \tag{1}\\
3 & 5
\end{array}\right), \mathbf{B}=\left(\begin{array}{cc}
4 & 6 \\
0 & -3
\end{array}\right), \mathbf{C}=\left(\begin{array}{ll}
x & 2 \\
0 & y
\end{array}\right), \mathbf{D}=\left(\begin{array}{cc}
2 & 7 \\
12 & -1
\end{array}\right) .
$$

(a) Find AB.

Solution

$$
\begin{aligned}
\mathbf{A B} & =\left(\begin{array}{cc}
2 & -1 \\
3 & 5
\end{array}\right)\left(\begin{array}{cc}
4 & 6 \\
0 & -3
\end{array}\right) \\
& =\underline{\left(\begin{array}{cc}
8 & 15 \\
12 & 3
\end{array}\right) .}
\end{aligned}
$$

(b) Express $4 \mathbf{C}+\mathbf{D}$ as a single matrix.

Solution

$$
\begin{aligned}
4 \mathbf{C}+\mathbf{D} & =4\left(\begin{array}{ll}
x & 2 \\
0 & y
\end{array}\right)+\left(\begin{array}{cc}
2 & 7 \\
12 & -1
\end{array}\right) \\
& =\underline{\left(\begin{array}{cc}
4 x+2 & 15 \\
12 & 4 y-1
\end{array}\right)} .
\end{aligned}
$$

(c) Given that

$$
\mathbf{A B}=4 \mathbf{C}+\mathbf{D}
$$

find the values of x and y.

Solution

$$
\begin{aligned}
4 x+2=8 & \Rightarrow 4 x=6 \\
& \Rightarrow x=1 \frac{1}{2} \\
4 y-1=3 & \Rightarrow 4 y=4 \\
& \Rightarrow y=1 .
\end{aligned}
$$

2. Given that

$$
\begin{equation*}
y=\mathrm{e}^{2 x} \cos x \tag{3}
\end{equation*}
$$

find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.

Solution

$$
\begin{gathered}
u=\mathrm{e}^{2 x} \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=2 \mathrm{e}^{2 x} \\
v=\cos x \Rightarrow \frac{\mathrm{~d} v}{\mathrm{~d} x}=-\sin x \\
y=\mathrm{e}^{2 x} \cos x \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\left(\mathrm{e}^{2 x}\right)(-\sin x)+\left(2 \mathrm{e}^{2 x}\right)(\cos x) \\
\Rightarrow \frac{\mathrm{d} y}{\underline{\mathrm{~d} x}}=\mathrm{e}^{2 x}(2 \cos x-\sin x) .
\end{gathered}
$$

3. Express

$$
y=\frac{4 x-3}{x\left(x^{2}+3\right)}, x \neq 0
$$

in partial fractions.

Solution

$$
\begin{aligned}
\frac{4 x-3}{x\left(x^{2}+3\right)} & \equiv \frac{A}{x}+\frac{B+C x}{x^{2}+3} \\
& \equiv \frac{A\left(x^{2}+3\right)+(B+C x) x}{x\left(x^{2}+3\right)}
\end{aligned}
$$

which means

$$
4 x-3 \equiv A\left(x^{2}+3\right)+(B+C x) x
$$

$\underline{x=0}:-3=3 A \Rightarrow A=-1$.
x=1: $1=4 A+B+C \Rightarrow B+C=5$
$x=-1:-7=4 A-B+C \Rightarrow-B+C=-3$
Now, (1) $+(2)$:

$$
\begin{aligned}
2 C=2 & \Rightarrow C=1 \\
& \Rightarrow B=4 .
\end{aligned}
$$

Finally,

$$
y=\underline{\underline{-\frac{1}{x}}+\frac{4+x}{x^{2}+3}} .
$$

4. (a) Use integration by parts to show that

$$
\begin{equation*}
\int \ln x \mathrm{~d} x=x \ln x-x+c \tag{2}
\end{equation*}
$$

Solution

$$
\begin{gathered}
u=\ln x \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=\frac{1}{x} \\
\frac{\mathrm{~d} v}{\mathrm{~d} x}=1 \Rightarrow v=x \\
\begin{aligned}
\int \ln x \mathrm{~d} x & =\int \ln x \cdot 1 \mathrm{~d} x \\
& =x \ln x-\int 1 \mathrm{~d} x \\
& =\underline{\underline{x \ln x-x+c}}
\end{aligned}
\end{gathered}
$$

as required.

A goblet consists of a bowl and a short stem.

The diagram below shows the bowl section of the goblet (on its side).

The equation of the upper half of the curve is

$$
y=2 \sqrt{\ln x}
$$

for $1 \leqslant x \leqslant 10$.
(b) Given that the stem has length 1 and the overall height is 10 , what is the capacity of the bowl?

Solution

$$
\begin{aligned}
\text { Volume } & =\int_{1}^{10} \pi(2 \sqrt{\ln x})^{2} \mathrm{~d} x \\
& =4 \pi \int_{1}^{10} \ln x \mathrm{~d} x \\
& =4 \pi[x \ln x-x]_{x=1}^{10} \\
& =4 \pi[(10 \ln 10-10)-(0-1)] \\
& =\underline{\underline{4 \pi(10 \ln 10-9)}} .
\end{aligned}
$$

5. (a) Use the standard formulas for

$$
\sum_{r=1}^{n} r \text { and } \sum_{r=1}^{n} r^{2}
$$

to show that

$$
\sum_{r=1}^{n}\left(6 r^{2}-r\right)=\frac{1}{2} n(n+1)(4 n+1)
$$

Solution

$$
\begin{aligned}
\sum_{r=1}^{n}\left(6 r^{2}-r\right) & =6 \sum_{r=1}^{n} r^{2}-\sum_{r=1}^{n} r \\
& =n(n+1)(2 n+1)-\frac{1}{2} n(n+1) \\
& =\frac{1}{2} n(n+1)[2(2 n+1)-1] \\
& =\frac{1}{2} n(n+1)(4 n+1),
\end{aligned}
$$

as required.
(b) Hence evaluate

Solution

$$
\sum_{r=5}^{10}\left(6 r^{2}-r\right)
$$

$$
\begin{aligned}
\sum_{r=5}^{10}\left(6 r^{2}-r\right) & =\sum_{r=1}^{10}\left(6 r^{2}-r\right)-\sum_{r=1}^{4}\left(6 r^{2}-r\right) \\
& =\frac{1}{2}(10)(11)(41)-\frac{1}{2}(4)(5)(17) \\
& =2255-170 \\
& =\underline{\underline{2085}} .
\end{aligned}
$$

6. Newton's law of cooling states that a body loses heat at a rate which is proportional to the difference in temperature between itself and its surroundings. So, in a room with constant temperature $22^{\circ} \mathrm{C}$, the temperature $T^{\circ} \mathrm{C}$ of a body after a time t minutes satisfies

$$
\frac{\mathrm{d} T}{\mathrm{~d} t}=k(T-22)
$$

where k is a negative constant.
(a) Hence show that T can be expressed in the form

$$
\begin{equation*}
T=A \mathrm{e}^{k t}+22 \tag{4}
\end{equation*}
$$

for some arbitrary constant A.

Solution

$$
\begin{aligned}
\frac{\mathrm{d} T}{\mathrm{~d} t}=k(T-22) & \Rightarrow \frac{1}{(T-22)} \mathrm{d} T=k \mathrm{~d} t \\
& \Rightarrow \int \frac{1}{(T-22)} \mathrm{d} T=\int k \mathrm{~d} t \\
& \Rightarrow \ln (T-22)=k t+c \\
& \Rightarrow T-22=\mathrm{e}^{k t+c} \\
& \Rightarrow T-22=\mathrm{e}^{k t} \mathrm{e}^{c} \\
& \Rightarrow T-22=A \mathrm{e}^{k t}(\text { for some constant } A) \\
& \Rightarrow T=A \mathrm{e}^{k t}+22,
\end{aligned}
$$

as required.

In a restaurant, where the temperature remains constant at $22^{\circ} \mathrm{C}$, a freshly baked roll, with temperature $82^{\circ} \mathrm{C}$, is placed on a cooling tray. After 5 minutes, the temperature of the roll has fallen by $20^{\circ} \mathrm{C}$.
(b) (i) Calculate the values of A and k.

Solution

$$
\begin{aligned}
t=0, T=82 & \Rightarrow 82=A+22 \\
& \Rightarrow \underline{A=60} \\
t=5, T=62 & \Rightarrow 62=60 \mathrm{e}^{5 k}+22 \\
& \Rightarrow 40=60 \mathrm{e}^{5 k} \\
& \Rightarrow \mathrm{e}^{5 k}=\frac{2}{3} \\
& \Rightarrow 5 k=\ln \frac{2}{3} \\
& \Rightarrow k=\frac{1}{5} \ln \frac{2}{3} .
\end{aligned}
$$

(ii) Write down an expression for the temperature of the roll after t minutes.

Solution

$$
\underline{T=60 \mathrm{e}^{\left(\frac{1}{5} \ln \frac{2}{3}\right) t}+22}
$$

(iii) Supposing the roll remains uneaten after a further 5 minutes, what will its temperature be?

Solution

$$
\begin{aligned}
t=10 & \Rightarrow T=60 \mathrm{e}^{2 \ln \frac{2}{3}}+22 \\
& \Rightarrow \underline{T=48 \frac{2^{\circ}}{}{ }^{\circ} \mathrm{C}}
\end{aligned}
$$

