Dr Oliver Mathematics Mathematics: Advanced Higher 2019 Paper 3 hours

The total number of marks available is 100 .
You must write down all the stages in your working.

1. (a) Differentiate

$$
\begin{equation*}
\mathrm{f}(x)=x^{6} \cot 5 x \tag{2}
\end{equation*}
$$

(b) Given
find $\frac{\mathrm{d} y}{\mathrm{~d} x}$. Simplify your answer.
(c) For

$$
\begin{equation*}
\mathrm{f}(x)=\cos ^{-1} 2 x \tag{3}
\end{equation*}
$$

evaluate $\mathrm{f}^{\prime}\left(\frac{\sqrt{3}}{4}\right)$.
2. Matrix \mathbf{A} is defined by

$$
\mathbf{A}=\left(\begin{array}{ccc}
2 & 1 & 4 \\
-3 & p & 2 \\
-1 & -2 & 5
\end{array}\right)
$$

where $p \in \mathbb{R}$.
(a) Given that the determinant of \mathbf{A} is 3 , find the value of p.

Matrix B is defined by

$$
\mathbf{B}=\left(\begin{array}{ll}
0 & 1 \\
q & 3 \\
4 & 0
\end{array}\right)
$$

where $q \in \mathbb{R}$.
(b) Find AB.
(c) Explain why $\mathbf{A B}$ does not have an inverse.
3. The function diagram $\mathrm{f}(x)$ is defined by

$$
\mathrm{f}(x)=x^{2}-a^{2} .
$$

The graph of is shown in the diagram.

(a) State whether $\mathrm{f}(x)$ is odd, even or neither. Give a reason for your answer.
(b) Sketch the graph of $y=|\mathrm{f}(x)|$.
4. (a) Express

$$
\begin{equation*}
\frac{3 x^{2}+x-17}{x^{2}-x-12} \tag{1}
\end{equation*}
$$

in the form

$$
p+\frac{q x+r}{x^{2}-x-12}
$$

where p, q, and r are integers.
(b) Hence express

$$
\begin{equation*}
\frac{3 x^{2}+x-17}{x^{2}-x-12} \tag{3}
\end{equation*}
$$

with partial fractions.
5. For

$$
x=\ln (2 t+7) \text { and } y=t^{2}, t>0
$$

find
(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}$,
(b) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.
6. A spherical balloon of radius $r \mathrm{~cm}, r>0$, deflates at a constant rate of $60 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$.

Calculate the rate of change of the radius with respect to time when $r=3$.
7. (a) Find an expression of

$$
\begin{equation*}
\sum_{r=1}^{n}(6 r+13) \tag{1}
\end{equation*}
$$

in terms of n.
(b) Hence, or otherwise, find

$$
\begin{equation*}
\sum_{r=p+1}^{20}(6 r+13) \tag{2}
\end{equation*}
$$

8. Find the particular solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+11 \frac{\mathrm{~d} y}{\mathrm{~d} x}+28 y=0 \tag{5}
\end{equation*}
$$

given that $y=0$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=9$, when $x=0$.
9. (a) Write down and simplify the general term in the binomial expansion of

$$
\begin{equation*}
\left(2 x^{2}-\frac{d}{x^{3}}\right)^{7} \tag{3}
\end{equation*}
$$

where d is a constant.
(b) Given that the coefficient of $\frac{1}{x}$ is -70000 , find the value of d.
10. A curve is defined implicitly by the equation

$$
\begin{equation*}
x^{2}+y^{2}=x y+12 \tag{3}
\end{equation*}
$$

(a) Find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.
(b) There are two points where the tangent to the curve has equation $x=k, k \in \mathbb{R}$.

Find the values of k.
11. Let n be a positive integer.
(a) Find a counterexample to show that the following statement is false.

$$
\begin{equation*}
n^{2}+n+1 \text { is always a prime number. } \tag{1}
\end{equation*}
$$

(b) (i) Write down the contrapositive of:

$$
\begin{equation*}
\text { If } n^{2}-2 n+7 \text { is even, then } n \text { is odd. } \tag{1}
\end{equation*}
$$

(ii) Use the contrapositive to prove that if $n^{2}-2 n+7$ is even then n is odd.
12. Express 231_{11} in base 7 .
13. An electronic device contains a timer circuit that switches off when the voltage, V, reaches a set value. The rate of change of the voltage is given by

$$
\frac{\mathrm{d} V}{\mathrm{~d} t}=k(12-V)
$$

where k is a constant, t is the time in seconds, and $0 \leqslant V<12$.
Given that $V=2$ when $t=0$, express V in terms of k and t.
14. Prove by induction that

$$
\begin{equation*}
\sum_{r=1}^{n} r!r=(n+1)!-1 \tag{5}
\end{equation*}
$$

for all positive integers n.
15. The equations of two planes are given below.

$$
\begin{array}{ll}
\pi_{1}: & 2 x-3 y-z=9 \\
\pi_{2}: & x+y-3 z=2 . \tag{2}
\end{array}
$$

(a) Verify that the line of intersection, L_{1}, of these two planes has parametric equations:

$$
x=2 \lambda+3, y=\lambda-1, z=\lambda
$$

Let π_{3} be the plane with equation

$$
-2 x+4 y+3 z=4
$$

(b) Calculate the acute angle between the line L_{1} and the plane π_{3}.
L_{2} is the line perpendicular to π_{3} passing through $P(1,3,-2)$.
(c) Determine whether or not L_{1} and L_{2} intersect.
16. (a) Use integration by parts to find the exact value of

$$
\begin{equation*}
\int_{0}^{1}\left(x^{2}-2 x+1\right) \mathrm{e}^{4 x} \mathrm{~d} x . \tag{5}
\end{equation*}
$$

A solid is formed by rotating the curve with equation $y=4(x-1) \mathrm{e}^{2 x}$ between $x=0$ and $x=1$ through 2π radians about the x-axis.
(b) Find the exact value of the volume of this solid.
17. The first three terms of a sequence are given by

$$
\begin{equation*}
5 x+8,-2 x+1, x-4 \tag{2}
\end{equation*}
$$

(a) When $x=11$, show that the first three terms form the start of a geometric sequence, and state the value of the common ratio.
(b) Given that the entire sequence is geometric for $x=11$,
(i) state why the associated series has a sum to infinity, and
(ii) calculate this sum to infinity.

There is a second value for x that also gives a geometric sequence.
(c) For this second sequence
(i) show that

$$
\begin{equation*}
x^{2}-8 x-33=0, \tag{2}
\end{equation*}
$$

(ii) find the first three terms, and
(iii) state the value of $S_{2 n}$ and justify your answer.
18. The complex number w has been plotted on an Argand diagram, as shown below.

(a) Express w in
(i) Cartesian form,
(ii) polar form.

The complex number z_{1} is a root of $z^{3}=w$, where

$$
z_{1}=k\left(\cos \frac{1}{m} \pi+\sin \frac{1}{m} \pi\right)
$$

for integers k and m.
(b) Given that $a=4$,
(i) use de Moivre's theorem to obtain the values of k and m, and
(ii) find the remaining roots.

