Dr Oliver Mathematics Worked Examples Find the Area of the Yellow Region 1

From: LoveMath., 28 April 2023

1. In Figure 1, a circle, centred at O and of radius 17 cm , parallel chords $A B$ and $C D$ are drawn.

Figure 1: a circle, centred at O and of radius 17 cm

These parallel chords are, respectively, $A B=16 \mathrm{~cm}$ and $C D=30 \mathrm{~cm}$.

Find the area which is coloured in yellow.

Solution

Let E be the midpoint on $A B$ and let F be the midpoint on $C D$ so that $E O F$ is a straight line.

Let $O E=x \mathrm{~cm}$ and $O F=y \mathrm{~cm}$, as shown in Figure 2:

Figure 2: x, y, and the four radii

We will calculate the values of x and y using Pythagoras' theorem:

$$
\begin{aligned}
8^{2}+x^{2}=17^{2} & \Rightarrow 64+x^{2}=289 \\
& \Rightarrow x^{2}=225 \\
& \Rightarrow x=15
\end{aligned}
$$

and

$$
\begin{aligned}
15^{2}+y^{2}=17^{2} & \Rightarrow 225+y^{2}=289 \\
& \Rightarrow y^{2}=64 \\
& \Rightarrow y=8
\end{aligned}
$$

The two triangles are both $(8,15,17)$ Pythagorean triples.
Now,

Figure 3: $E O F$ is a straight line

$$
\begin{aligned}
\angle A O E+\angle A O C+\angle C O F=180 & \Rightarrow(90-a)+\angle A O C+a=180 \\
& \Rightarrow \angle A O C=90^{\circ} ;
\end{aligned}
$$

exactly the same goes for $\angle B O D$:

$$
\angle B O D=90^{\circ} .
$$

(In fact,

$$
\angle A O D=\tan ^{-1} \frac{8}{15}=28.07248694^{\circ}(\mathrm{FCD})
$$

and

$$
\angle C O E=\tan ^{-1} \frac{15}{8}=61.92751306^{\circ}(\mathrm{FCD}) ;
$$

the reader will not be surprised to find the sum the angles equals 90°.)
Now,

$$
\begin{aligned}
\text { area } \triangle O A B & =\frac{1}{2} \times 16 \times 15 \\
& =120 \mathrm{~cm}^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\text { area } \triangle O C D & =\frac{1}{2} \times 30 \times 8 \\
& =120 \mathrm{~cm}^{2} .
\end{aligned}
$$

Next,

$$
\begin{aligned}
\text { area }_{\text {sector }}^{O A C} & =\frac{1}{4} \times\left(\pi \times 17^{2}\right) \\
& =\frac{289}{4} \pi
\end{aligned}
$$

and

$$
\begin{aligned}
\text { area }_{\text {sector }}^{O B D} & =\frac{1}{4} \times\left(\pi \times 17^{2}\right) \\
& =\frac{289}{4} \pi
\end{aligned}
$$

Finally,

$$
\begin{aligned}
\text { area } & =120+120+\frac{289}{4} \pi+\frac{289}{4} \pi \\
& =\underline{\underline{\left(240+\frac{289}{2} \pi\right) \mathrm{cm}^{2}} .}
\end{aligned}
$$

