Dr Oliver Mathematics
 Area of a Triangle

In this note, we will investigate the area of a triangle.
Suppose we have the following triangle.

Split the triangle in two and call the altitude h :

Now,

$$
\frac{h}{b}=\sin A^{\circ} \Rightarrow h=b \sin A^{\circ}
$$

and

$$
\begin{aligned}
\text { area of a triangle } & =\frac{1}{2} c h \\
& =\frac{1}{2} b c \sin A^{\circ} .
\end{aligned}
$$

What about one obtuse angle?

since supplementary angles have the same sine and the proof follows.
What about right-angled triangles?

Now,

$$
\text { area of a triangle }=\frac{1}{2} b c=\frac{1}{2} b c \sin A^{\circ}
$$

since $\sin A^{\circ}=1$.

Hence, the area of a triangle equals
$\frac{1}{2} \times$ product of the two sides \times sine of the included angle
and we are left with this

$$
\begin{aligned}
\text { area of a triangle } & =\frac{1}{2} b c \sin A^{\circ} \\
& =\frac{1}{2} a c \sin B^{\circ} \\
& =\frac{1}{2} a b \sin C^{\circ} .
\end{aligned}
$$

Let the area of a triangle be A and we can rearrange this into

$$
\begin{aligned}
& \sin A^{\circ}=\frac{2 A}{b c} \\
& \sin B^{\circ}=\frac{2 A}{a c} \\
& \sin C^{\circ}=\frac{2 A}{a b}
\end{aligned}
$$

Okay: a few examples. We will give our answers to 3 significant figures. Oh, the diagrams are not accurately drawn...

1. In $\triangle A B C$, find the area.

Solution	
Area $=\frac{1}{2} \times 10.5 \times 11.2 \times \sin 73^{\circ}$ $=56.23071965(\mathrm{FCD})$ $=\underline{56.2 \mathrm{~cm}^{2}(3 \mathrm{sf}) .}$	

2. In $\triangle D E F$, find $E F$.

Solution

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \times 21 \times 19 \times \sin 130^{\circ} \\
& =152.8258664(\mathrm{FCD}) \\
& =\underline{\underline{153 \mathrm{~mm}^{2}(3 \mathrm{sf})} .}
\end{aligned}
$$

3. In $\triangle X Y Z$, the area equals $30 \mathrm{~cm}^{2}$. Find x°.

Solution

$$
\begin{aligned}
30=\frac{1}{2} \times 8 \times 9 \times \sin x^{\circ} & \Rightarrow \sin x^{\circ}=\frac{5}{6} \\
& \Rightarrow x^{\circ}=56.44269024 \text { or } 123.5573098(\mathrm{FCD}) \\
& \Rightarrow x^{\circ}=56.2^{\circ} \text { or } 124^{\circ}(3 \mathrm{sf}) .
\end{aligned}
$$

