Dr Oliver Mathematics Area of a Triangle

In this note, we will investigate the area of a triangle.

Suppose we have the following triangle.

Split the triangle in two and call the altitude h:

Now,

and

What about one obtuse angle?

since supplementary angles have the same sine and the proof follows.

What about right-angled triangles?

Now,

area of a triangle = $\frac{1}{2}bc = \frac{1}{2}bc\sin A^{\circ}$

since $\sin A^{\circ} = 1$.

Hence, the area of a triangle equals

 $\frac{1}{2}$ × product of the two sides × sine of the included angle and we are left with this

area of a triangle =	$=\frac{1}{2}bc\sin A^{\circ}$
	$=\frac{1}{2}ac\sin B^{\circ}$
	$= \frac{1}{2}ab\sin C^{\circ}.$
THATACA	INTIPA

Let the area of a triangle be A and we can rearrange this into

$$\sin A^{\circ} = \frac{2A}{bc}$$
$$\sin B^{\circ} = \frac{2A}{ac}$$
$$\sin C^{\circ} = \frac{2A}{ab}.$$

Okay: a few examples. We will give our answers to 3 significant figures. Oh, the diagrams are not accurately drawn...

1. In $\triangle ABC$, find the area.

Solution

Area =
$$\frac{1}{2} \times 10.5 \times 11.2 \times \sin 73^{\circ}$$

= 56.230 719 65 (FCD)
= $56.2 \text{ cm}^2 (3 \text{ sf}).$

2. In $\triangle DEF$, find EF.

3. In $\triangle XYZ$, the area equals 30 cm². Find x° .

Solution

$$30 = \frac{1}{2} \times 8 \times 9 \times \sin x^{\circ} \Rightarrow \sin x^{\circ} = \frac{5}{6}$$
$$\Rightarrow x^{\circ} = 56.442\,690\,24 \text{ or } 123.557\,309\,8 \text{ (FCD)}$$
$$\Rightarrow \underline{x^{\circ} = 56.2^{\circ} \text{ or } 124^{\circ} \text{ (3 sf)}.}$$