Dr Oliver Mathematics
 Advanced Subsidiary Paper 1: Pure Mathematics June 2022: Calculator 2 hours

The total number of marks available is 100 .
You must write down all the stages in your working.
Inexact answers should be given to three significant figures unless otherwise stated.

1. Find

$$
\begin{equation*}
\int\left(8 x^{3}-\frac{3}{2 \sqrt{x}}+5\right) \mathrm{d} x \tag{4}
\end{equation*}
$$

giving your answer in simplest form.

Solution

$$
\begin{aligned}
\int\left(8 x^{3}-\frac{3}{2 \sqrt{x}}+5\right) \mathrm{d} x & =\int\left(8 x^{3}-\frac{3}{2} x^{-\frac{1}{2}}+5\right) \mathrm{d} x \\
& =\underline{\underline{2 x^{4}-3 x^{\frac{1}{2}}+5 x+c}} .
\end{aligned}
$$

2.

$$
\mathrm{f}(x)=2 x^{3}+5 x^{2}+2 x+15 .
$$

(a) Use the factor theorem to show that $(x+3)$ is a factor of $\mathrm{f}(x)$.

Solution

Well,

$$
\begin{aligned}
\mathrm{f}(3) & =2\left[(-3)^{3}\right]+5\left[(-3)^{2}\right]+2(-3)+15 \\
& =-54+45-6+15 \\
& =0
\end{aligned}
$$

as their is no remainder, we conclude that $(x+3)$ is a factor of $\mathrm{f}(x)$.
(b) Find the constants a, b, and c such that

$$
\mathrm{f}(x)=(x+3)\left(a x^{2}+b x+c\right)
$$

Solution

We use synthetic division:

-3	2	5	2	15
	\downarrow	-6	3	-15
	2	-1	5	0

So,

$$
2 x^{3}+5 x^{2}+2 x+15=(x+3)\left(2 x^{2}-x+5\right)
$$

hence, $\underline{\underline{a=2}}, \underline{\underline{b=-1}}$, and $\underline{\underline{c=5}}$.
(c) Hence show that $\mathrm{f}(x)=0$ has only one real root.

Solution

Well,

$$
\begin{aligned}
b^{2}-4 a c & =(-1)^{2}-4 \times 2 \times 5 \\
& =1-40 \\
& =-39 \\
& <0
\end{aligned}
$$

no real roots! Hence, $\mathrm{f}(x)=0$ has only one real root.
(d) Write down the real root of the equation

$$
f(x-5)=0
$$

Solution

$$
-3+5=2 .
$$

3. The triangle $P Q R$ is such that $\overrightarrow{P Q}=3 \mathbf{i}+5 \mathbf{j}$ and $\overrightarrow{P R}=13 \mathbf{i}-15 \mathbf{j}$.
(a) Find $\overrightarrow{Q R}$.

Solution

$$
\begin{aligned}
\overrightarrow{Q R} & =\overrightarrow{Q P}+\overrightarrow{P R} \\
& =-\overrightarrow{P Q}+\overrightarrow{P R} \\
& =-(3 \mathbf{i}+5 \mathbf{j})+(13 \mathbf{i}-15 \mathbf{j}) \\
& =-3 \mathbf{i}-5 \mathbf{j}+13 \mathbf{i}-15 \mathbf{j} \\
& =\underline{\underline{10}-20 \mathbf{j}} .
\end{aligned}
$$

(b) Hence find $|\overrightarrow{Q R}|$ giving your answer as a simplified surd.

Solution

$$
\begin{aligned}
|\overrightarrow{Q R}| & =\sqrt{10^{2}+(-20)^{2}} \\
& =\sqrt{100+400} \\
& =\sqrt{500} \\
& =\sqrt{100 \times 5} \\
& =\sqrt{100} \times \sqrt{5} \\
& =\underline{\underline{10 \sqrt{5}}} .
\end{aligned}
$$

The point S lies on the line segment $Q R$ so that

$$
Q S: S R=3: 2
$$

(c) Find $\overrightarrow{P S}$.

Solution

$$
\begin{aligned}
\overrightarrow{P S} & =\overrightarrow{P Q}+\overrightarrow{Q S} \\
& =\overrightarrow{P Q}+\frac{3}{5} \overrightarrow{Q R} \\
& =(3 \mathbf{i}+5 \mathbf{j})+\frac{3}{5}(10 \mathbf{i}-20 \mathbf{j}) \\
& =3 \mathbf{i}+5 \mathbf{j}+6 \mathbf{i}-12 \mathbf{j} \\
& =\underline{\underline{\mathbf{i}}-7 \mathbf{j}} .
\end{aligned}
$$

4. Figure 1 shows a sketch of triangle $A B C$ with

- $A B=(x+2) \mathrm{cm}$,
- $B C=(3 x+10) \mathrm{cm}$,
- $A C=7 x \mathrm{~cm}$,
- angle $B A C=60^{\circ}$, and
- angle $A C B=\theta^{\circ}$.

Figure 1: a sketch of triangle $A B C$
(a) (i) Show that

$$
\begin{equation*}
17 x^{2}-35 x-48=0 . \tag{3}
\end{equation*}
$$

Solution

We use the cosine rule:

$$
\begin{aligned}
& B C^{2}=A B^{2}+A C^{2}-2 \times A B \times A C \times \cos A \\
\Rightarrow \quad & (3 x+10)^{2}=(x+2)^{2}+(7 x)^{2}-2 \times(x+2) \times(7 x) \times \cos 60^{\circ}
\end{aligned}
$$

\times	$3 x$	+10
$3 x$	$9 x^{2}$	$+30 x$
+10	$+30 x$	+100

\times	x	+2
x	x^{2}	$+2 x$
+2	$+2 x$	+4

$$
\Rightarrow \quad 9 x^{2}+60 x+100=x^{2}+4 x+4+49 x^{2}-7 x(x+2)
$$

$$
\Rightarrow \quad 9 x^{2}+60 x+100=x^{2}+4 x+4+49 x^{2}-7 x^{2} x-14 x
$$

$$
\Rightarrow \quad 0=34 x^{2}-70 x-96
$$

$$
\Rightarrow \quad 2\left(17 x^{2}-35 x-48\right)=0
$$

$$
\Rightarrow \quad \underline{\underline{17 x^{2}}-35 x-48=0}
$$

as required.
(ii) Hence find the value of x.

Solution

$$
\left.\begin{array}{lc}
\text { add to: } & -35 \\
\text { multiply to: } & (+17) \times(-48)=-816
\end{array}\right\}-51,+16
$$

E.g.,

$$
\begin{aligned}
17 x^{2}-35 x-48=0 & \Rightarrow 17 x^{2}-51 x+16 x-48=0 \\
& \Rightarrow 17 x(x-3)+16(x-3)=0 \\
& \Rightarrow(17 x+16)(x-3)=0 \\
& \Rightarrow 17 x+16=0 \text { or } x-3=0 \\
& \Rightarrow x=-\frac{16}{17} \text { or } x=3 ;
\end{aligned}
$$

now, $x \neq-\frac{16}{17}$ because $7 x$ is a length. So, $\underline{\underline{x=3}}$.
(b) Hence find the value of θ giving your answer to one decimal place.

Solution

We use the sine rule:

$$
\begin{aligned}
\frac{\sin C}{A B}=\frac{\sin A}{B C} & \Rightarrow \frac{\sin \theta}{5}=\frac{\sin 60^{\circ}}{19} \\
& \Rightarrow \sin \theta=\frac{5 \sin 60^{\circ}}{19} \\
& \Rightarrow \theta=13.173551111(\mathrm{FCD}) \\
& \Rightarrow \theta=13.2^{\circ}(3 \mathrm{sf}) .
\end{aligned}
$$

5. The mass, $A \mathrm{~kg}$, of algae in a small pond, is modelled by the equation

$$
A=p q^{t}
$$

where p and q are constants and t is the number of weeks after the mass of algae was first recorded.

Data recorded indicates that there is a linear relationship between t and $\log _{10} A$ given by the equation

$$
\begin{equation*}
\log _{10} A=0.03 t+0.5 \tag{4}
\end{equation*}
$$

(a) Use this relationship to find a complete equation for the model in the form

$$
A=p q^{t}
$$

giving the value of p and the value of q each to 4 significant figures.

Solution

$$
\begin{aligned}
\log _{10} A=0.03 t+0.5 & \Rightarrow A=10^{0.03 t+0.5} \\
& \Rightarrow A=10^{0.5} \cdot\left(10^{0.03}\right)^{t} \\
& \Rightarrow A=3.16227766 \cdot(1.071519305)^{t}(\mathrm{FCD}) \\
& \Rightarrow A=3.162 \cdot(1.072)^{t}(4 \mathrm{sf}) ;
\end{aligned}
$$

hence, $p=3.162(4 \mathrm{sf})$ and $q=1.072(4 \mathrm{sf})$.
(b) With reference to the model, interpret
(i) the value of the constant p,

Solution

E.g., p is the initial mass of algae.
(ii) the value of the constant q.

Solution

E.g., q is the weekly rate, the ratio of algae from one week to the next.
(c) Find, according to the model,
(i) the mass of algae in the pond when $t=8$, giving your answer to the nearest 0.5 kg ,

Solution

$$
\begin{aligned}
A & =3.162 \ldots \cdot(1.071 \ldots)^{8} \\
& =5.495408739(\mathrm{FCD}) \\
& =\underline{\underline{5.5} \mathrm{~kg}(\text { nearest } 0.5)} .
\end{aligned}
$$

(ii) the number of weeks it takes for the mass of algae in the pond to reach 4 kg .

Solution

Let t be the number of weeks. Then

$$
\begin{aligned}
4=3.162 \ldots \cdot(1.071 \ldots)^{t} & \Rightarrow(1.071 \ldots)^{t}=\frac{4}{3.162 \ldots} \\
& \Rightarrow \log _{10}(1.071 \ldots)^{t}=\log _{10}\left(\frac{4}{3.162 \ldots}\right) \\
& \Rightarrow t \log _{10}(1.071 \ldots)=\log _{10}\left(\frac{4}{3.162 \ldots}\right) \\
& \Rightarrow t=\frac{\log _{10}\left(\frac{4}{3.162 \ldots}\right)}{\log _{10} 1.071 \ldots} \\
& \Rightarrow t=3.401999711(\mathrm{FCD}) \\
& \Rightarrow t=3.4 \text { weeks }(1 \mathrm{dp}) .
\end{aligned}
$$

(d) State one reason why this may not be a realistic model in the long term.

Solution

E.g., as $t \rightarrow \infty, \underline{\underline{A \rightarrow \infty}}$, the weather may affect the rate of growth.
6. (a) Find the first 4 terms, in ascending powers of x, of the binomial expansion of

$$
\begin{equation*}
\left(3-\frac{2 x}{9}\right)^{8} \tag{4}
\end{equation*}
$$

giving each term in simplest form.

Solution

$$
\begin{aligned}
& \left(3-\frac{2 x}{9}\right)^{8} \\
\Rightarrow & 3^{8}+\binom{8}{1}\left(3^{7}\right)\left(-\frac{2 x}{9}\right)+\binom{8}{2}\left(3^{6}\right)\left(-\frac{2 x}{9}\right)^{2}+\binom{8}{3}\left(3^{5}\right)\left(-\frac{2 x}{9}\right)^{3}+\ldots \\
\Rightarrow & 6561-3888 x+1008 x^{2}-\frac{448}{3} x^{3}+\ldots
\end{aligned}
$$

$$
\mathrm{f}(x)=\left(\frac{x-1}{2 x}\right)\left(3-\frac{2 x}{9}\right)^{8}
$$

(b) Find the coefficient of x^{2} in the series expansion of $\mathrm{f}(x)$, giving your answer as a simplified fraction.

Solution

$$
\begin{aligned}
\mathrm{f}(x) & =\left(\frac{x-1}{2 x}\right)\left(3-\frac{2 x}{9}\right)^{8} \\
& =\left(\frac{1}{2}-\frac{1}{2 x}\right)\left[6561-3888 x+1008 x^{2}-\frac{448}{3} x^{3}+\ldots\right] \\
& =\ldots+\left[\frac{1}{2} x^{2}(1008 x)-\frac{1}{2 x}\left(-\frac{448}{3} x^{3}\right)\right]+\ldots \\
& =\ldots+\frac{1736}{3} x^{2}+\ldots
\end{aligned}
$$

hence, the coefficient of x^{2} in the series expansion of $\mathrm{f}(x)$ is $\xlongequal{\frac{1736}{3}}$.
7. (a) Factorise completely

$$
\begin{equation*}
9 x-x^{3} . \tag{2}
\end{equation*}
$$

Solution

$$
9 x-x^{3}=x\left(9-x^{2}\right)
$$

difference of two squares:

$$
\begin{aligned}
& =x\left(3^{2}-x^{2}\right) \\
& =\underline{\underline{x(3-x)(3+x)}} .
\end{aligned}
$$

The curve C has equation

$$
y=9 x-x^{3} .
$$

(b) Sketch C showing the coordinates of the points at which the curve cuts the x-axis.

The line l has equation $y=k$, where k is a constant.
Given that C and l intersect at 3 distinct points,
(c) find the range of values for k, writing your answer in set notation.

Solutions relying on calculator technology are not acceptable.

Solution

Well,

$$
y=9 x-x^{3} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=9-3 x^{2}
$$

and

$$
\begin{array}{r}
\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \Rightarrow 9-3 x^{2}=0 \\
\Rightarrow 3 x^{2}=9 \\
\Rightarrow x^{2}=3 \\
\Rightarrow x= \pm \sqrt{3}
\end{array}
$$

Now,

$$
x=3 \Rightarrow y=9(\sqrt{3})-(\sqrt{3})^{3}=6 \sqrt{3}
$$

and

$$
x=-3 \Rightarrow y=9(-\sqrt{3})-(-\sqrt{3})^{3}=-6 \sqrt{3}
$$

Hence,

$$
\underline{\underline{\{x \in \mathbb{R}:-6 \sqrt{3}<x<6 \sqrt{3}\}}} .
$$

8. In this question you must show all stages of your working. Solutions relying entirely on calculator technology are not acceptable.

The air pressure, $P \mathrm{~kg} / \mathrm{cm}^{2}$, inside a car tyre, t minutes from the instant when the tyre developed a puncture is given by the equation

$$
P=k+1.4 \mathrm{e}^{-0.5 t}, t \in \mathbb{R}, t \geqslant 0
$$

where k is a constant.
Given that the initial air pressure inside the tyre was $2.2 \mathrm{~kg} / \mathrm{cm}^{2}$,
(a) state the value of k.

Solution

$$
\begin{aligned}
2.2=k+1.4 \mathrm{e}^{-0.5 \times 0} & \Rightarrow 2.2=k+1.4 \\
& \Rightarrow \underline{\underline{k=0.8}}
\end{aligned}
$$

From the instant when the tyre developed the puncture,
(b) find the time taken for the air pressure to fall to $1 \mathrm{~kg} / \mathrm{cm}^{2}$. Give your answer in minutes to one decimal place.

Solution

$$
\begin{aligned}
1=0.8+1.4 \mathrm{e}^{-0.5 t} & \Rightarrow 1.4 \mathrm{e}^{-0.5 t}=0.2 \\
& \Rightarrow \mathrm{e}^{-0.5 t}=\frac{1}{7} \\
& \Rightarrow \mathrm{e}^{0.5 t}=7 \\
& \Rightarrow 0.5 t=\ln 7 \\
& \Rightarrow t=2 \ln 7(\text { exact }!) \\
& \Rightarrow t=3.89 \operatorname{mins}(3 \mathrm{sf}) .
\end{aligned}
$$

(c) Find the rate at which the air pressure in the tyre is decreasing exactly 2 minutes

Give your answer in $\mathrm{kg} / \mathrm{cm}^{2}$ per minute to 3 significant figures.

Solution

$$
P=0.8+1.4 \mathrm{e}^{-0.5 t} \Rightarrow \frac{\mathrm{~d} P}{\mathrm{~d} t}=-0.7 \mathrm{e}^{-0.5 t}
$$

and

$$
\begin{aligned}
t=2 & \Rightarrow \frac{\mathrm{~d} P}{\mathrm{~d} t}=-0.7 \mathrm{e}^{-1} \\
& \Rightarrow \frac{\mathrm{~d} P}{\mathrm{~d} t}=-0.2575156088(\mathrm{FCD}) ;
\end{aligned}
$$

hence, it is going down at $0.258 \mathrm{~kg} / \mathrm{cm}^{2}(3 \mathrm{sf})$.
9. (a) Given that $p=\log _{3} x$, where $x>0$, find in simplest form in terms of p,
(i) $\log _{3}\left(\frac{x}{9}\right)$

Solution

$$
\begin{aligned}
\log _{3}\left(\frac{x}{9}\right) & =\log _{3}(x)-\log _{3}(9) \\
& =\log _{3}(x)-\log _{3}\left(3^{2}\right) \\
& =\log _{3} x-2 \\
& =\underline{\underline{p-2}} .
\end{aligned}
$$

(ii) $\log _{3}(\sqrt{x})$.

Solution

$$
\begin{aligned}
\log _{3}(\sqrt{x}) & =\log _{3}\left(x^{\frac{1}{2}}\right) \\
& =\frac{1}{2} \log _{3} x \\
& =\underline{\underline{\frac{1}{2}} p .}
\end{aligned}
$$

(b) Hence, or otherwise, solve

$$
\begin{equation*}
2 \log _{3}\left(\frac{x}{9}\right)+3 \log _{3}(\sqrt{x})=-11 \tag{4}
\end{equation*}
$$

giving your answer as a simplified fraction.
Solutions relying on calculator technology are not acceptable.

Solution

$$
\begin{aligned}
& 2 \log _{3}\left(\frac{x}{9}\right)+3 \log _{3}(\sqrt{x})=-11 \\
\Rightarrow & 2(p-2)+3\left(\frac{1}{2} p\right)=-11 \\
\Rightarrow & 2 p-4+\frac{3}{2} p=-11 \\
\Rightarrow & \frac{7}{2} p=-7 \\
\Rightarrow & p=-2 \\
\Rightarrow & \log _{3} x=-2 \\
\Rightarrow & x=3^{-2} \\
\Rightarrow & x=\frac{1}{9} .
\end{aligned}
$$

10. In this question you must show all stages of your working.

Solutions relying on calculator technology are not acceptable.
Figure 2 shows a sketch of part of the curve C with equation

$$
y=\frac{1}{3} x^{2}-2 \sqrt{x}+3, x \geqslant 0 .
$$

Figure 2: a sketch of part of the curve C

The point P lies on C and has x-coordinate 4 .
The line l is the tangent to C at P.
(a) Show that l has equation

$$
\begin{equation*}
13 x-6 y-26=0 \tag{5}
\end{equation*}
$$

Solution

$$
x=4 \Rightarrow \frac{1}{3}\left(4^{2}\right)-2 \sqrt{4}+3=\frac{13}{3}
$$

so $P\left(4, \frac{13}{3}\right)$. Now,

$$
\begin{aligned}
y=\frac{1}{3} x^{2}-2 \sqrt{x}+3 & \Rightarrow y=\frac{1}{3} x^{2}-2 x^{\frac{1}{2}}+3 \\
& \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2}{3} x-x^{-\frac{1}{2}}
\end{aligned}
$$

and

$$
\begin{aligned}
x=4 & \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2}{3}(4)-4^{-\frac{1}{2}} \\
& \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{13}{6} .
\end{aligned}
$$

Hence, l has equation

$$
\begin{aligned}
y-\frac{13}{3}=\frac{13}{6}(x-4) & \Rightarrow 6 y-26=13(x-4) \\
& \Rightarrow 6 y-26=13 x-52 \\
& \Rightarrow \underline{\underline{13 x-6 y-26=0}}
\end{aligned}
$$

as required.

The region R, shown shaded in Figure 2, is bounded by the y-axis, the curve C, the line l, and the x-axis.
(b) Find the exact area of R.

Solution

We need to find where l crosses the x-axis:

$$
\begin{aligned}
y=0 & \Rightarrow 13 x=26 \\
& \Rightarrow x=2 .
\end{aligned}
$$

Now,

$$
\text { area of } \begin{aligned}
R & =\text { area under the curve }- \text { area under } l \\
& =\int_{0}^{4}\left(\frac{1}{3} x^{2}-2 x^{\frac{1}{2}}+3\right) \mathrm{d} x-\frac{1}{2} \times 2 \times \frac{13}{3} \\
& =\left[\frac{1}{9} x^{3}-\frac{4}{3} x^{\frac{3}{2}}+3 x\right]_{x=0}^{4}-\frac{13}{3} \\
& =\left\{\left(\frac{64}{9}-\frac{32}{3}+12\right)-(0-0+0)\right\}-\frac{13}{3} \\
& =\frac{76}{3}-\frac{13}{3} \\
& =\underline{4 \frac{1}{9}} .
\end{aligned}
$$

11. Figure 3 shows the circle C with equation

$$
x^{2}+y^{2}-10 x-8 y+32=0
$$

and the line l with equation

$$
2 y+x+6=0
$$

Figure 3: $x^{2}+y^{2}-10 x-8 y+32=0$
(a) Find
(i) the coordinates of the centre of C,

Solution

We have to complete the square, twice:

$$
\begin{aligned}
& x^{2}+y^{2}-10 x-8 y+32=0 \\
\Rightarrow & x^{2}-10 x+y^{2}-8 y=-32 \\
\Rightarrow & \left(x^{2}-10 x+25\right)+\left(y^{2}-8 y+16\right)=-32+25+16 \\
\Rightarrow & (x-5)^{2}+(y-4)^{2}=9 \\
\Rightarrow & (x-5)^{2}+(y-4)^{2}=3^{2}
\end{aligned}
$$

hence, the centre is $\underline{\underline{(5,4)} \ldots}$
(ii) the radius of C.

Solution

\ldots and the radius is $\underline{\underline{3}}$.

Solution

(b) Find the shortest distance between C and l.

Solution

Well,

$$
\begin{aligned}
2 y+x+6=0 & \Rightarrow 2 y=-x-6 \\
& \Rightarrow y=-\frac{1}{2} x-3
\end{aligned}
$$

and

$$
m_{\text {normal }}=-\frac{1}{-\frac{1}{2}}=2
$$

Now, it goes through the point $(5,4)$ and the equation of the normal is

$$
\begin{aligned}
y-4=2(x-5) & \Rightarrow y-4=2 x-10 \\
& \Rightarrow y=2 x-6 .
\end{aligned}
$$

We need to find the point at which these two lines intersect:

$$
\begin{aligned}
2 y+x+6=0 & \Rightarrow 2(2 x-6)+x+6=0 \\
& \Rightarrow 4 x-12+x+6=0 \\
& \Rightarrow 5 x=6 \\
& \Rightarrow x=\frac{6}{5} \\
& \Rightarrow y=2\left(\frac{6}{5}\right)-6=-\frac{18}{5} ;
\end{aligned}
$$

so, the point is $\left(\frac{6}{5},-\frac{18}{5}\right)$. Finally,

$$
\begin{aligned}
\text { shortest distance } & =\sqrt{\left(5-\frac{6}{5}\right)^{2}+\left[4-\left(-\frac{18}{5}\right)\right]^{2}}-3 \\
& =\sqrt{14.44+57.76}-3 \\
& =\sqrt{72.2}-3 \\
& =\xlongequal{\frac{19}{5} \sqrt{5}-3 .}
\end{aligned}
$$

12. A company makes drinks containers out of metal.

The containers are modelled as closed cylinders with base radius $r \mathrm{~cm}$ and height $h \mathrm{~cm}$ and the capacity of each container is $355 \mathrm{~cm}^{3}$.

The metal used

- for the circular base and the curved side costs 0.04 pence $/ \mathrm{cm}^{2}$ and
- for the circular top costs 0.09 pence $/ \mathrm{cm}^{2}$

Both metals used are of negligible thickness.
(a) Show that the total cost, C pence, of the metal for one container is given by

$$
\begin{equation*}
C=0.13 \pi r^{2}+\frac{28.4}{r} . \tag{4}
\end{equation*}
$$

Solution

Let $r \mathrm{~cm}$ be the radius and let $h \mathrm{~cm}$ be the height. Now,

$$
\pi r^{2} h=355 \Rightarrow h=\frac{355}{\pi r^{2}}
$$

and

$$
\begin{aligned}
C & =\text { bottom }+ \text { curved part }+ \text { top } \\
& =\left(0.04 \times \pi r^{2}\right)+(0.04 \times 2 \pi r h)+\left(0.09 \times \pi r^{2}\right) \\
& =0.13 \pi r^{2}+0.08 \pi r\left(\frac{355}{\pi r^{2}}\right) \\
& =\underline{\underline{0.13 \pi r^{2}+\frac{28.4}{r}}}
\end{aligned}
$$

as required.
(b) Use calculus to find the value of r for which C is a minimum, giving your answer to 3 significant figures.

Solution

$$
\begin{aligned}
C=0.13 \pi r^{2}+\frac{28.4}{r} & \Rightarrow C=0.13 \pi r^{2}+28.4 r^{-1} \\
& \Rightarrow \frac{\mathrm{~d} C}{\mathrm{~d} r}=0.26 \pi r-28.4 r^{-2}
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\mathrm{d} C}{\mathrm{~d} r}=0 & \Rightarrow 0.26 \pi r-28.4 r^{-2}=0 \\
& \Rightarrow 0.26 \pi r=28.4 r^{-2} \\
& \Rightarrow r^{3}=\frac{1420}{13 \pi} \\
& \Rightarrow r=\sqrt[3]{\frac{1420}{13 \pi}} \\
& \Rightarrow r=3.263861387(\mathrm{FCD}) \\
& \Rightarrow r=3.26 \mathrm{~cm} \mathrm{(3sf)} .
\end{aligned}
$$

(c) Using $\frac{\mathrm{d}^{2} C}{\mathrm{~d} r^{2}}$ prove that the cost is minimised for the value of r found in part (b).

Solution

$$
\frac{\mathrm{d} C}{\mathrm{~d} r}=0.26 \pi r-28.4 r^{-2} \Rightarrow \frac{\mathrm{~d}^{2} C}{\mathrm{~d} r^{2}}=0.26 \pi+56.8 r^{-3}
$$

and

$$
r=3.263 \ldots \Rightarrow \frac{\mathrm{~d}^{2} C}{\mathrm{~d} r^{2}}=0.26 \pi+56.8\left(3.263 \ldots{ }^{-3}\right)>0
$$

Hence, the cost is minimised for the value of r
(d) Hence find the minimum value of C, giving your answer to the nearest integer.

Solution

$$
\begin{aligned}
C & =0.13 \pi\left(3.263 \ldots{ }^{2}\right)+\frac{28.4}{3.263 \ldots} \\
& =13.05202487(\mathrm{FCD}) \\
& =\underline{\underline{13} \text { (nearest integer) } .} .
\end{aligned}
$$

13. In this question you must show all stages of your working. Solutions relying entirely on calculator technology are not acceptable.
(a) Show that

Solution

$$
\begin{aligned}
\frac{1}{\cos \theta}+\tan \theta & \equiv \frac{1}{\cos \theta}+\frac{\sin \theta}{\cos \theta} \\
& \equiv \frac{1+\sin \theta}{\cos \theta} \\
& \equiv \frac{1+\sin \theta}{\cos \theta} \times \frac{1-\sin \theta}{1-\sin \theta} \\
& \equiv \frac{(1+\sin \theta)(1-\sin \theta)}{\cos \theta(1-\sin \theta)} \\
& \equiv \frac{1-\sin ^{2} \theta}{\cos \theta(1-\sin \theta)} \\
& \equiv \frac{\cos ^{2} \theta}{\cos \theta(1-\sin \theta)} \\
& \equiv \frac{\cos \theta}{\underline{1-\sin \theta}},
\end{aligned}
$$

as required.

Given that $\cos 2 x \neq 0$,
(b) solve for $0^{\circ}<x<90^{\circ}$,

$$
\begin{equation*}
\frac{1}{\cos 2 x}+\tan 2 x=3 \cos 2 x \tag{5}
\end{equation*}
$$

giving your answers to one decimal place.

Solution

$$
\begin{aligned}
\frac{1}{\cos 2 x}+\tan 2 x=3 \cos 2 x & \Rightarrow \frac{\cos 2 x}{1-\sin 2 x}=3 \cos 2 x \\
& \Rightarrow \frac{\cos 2 x}{1-\sin 2 x}-3 \cos 2 x=0 \\
& \Rightarrow \cos 2 x\left(\frac{1}{1-\sin 2 x}-3\right)=0 \\
& \Rightarrow \frac{1}{1-\sin 2 x}-3=0 \\
& \Rightarrow \frac{1}{1-\sin 2 x}=3 \\
& \Rightarrow 1-\sin 2 x=\frac{1}{3} \\
& \Rightarrow \sin 2 x=\frac{2}{3}
\end{aligned}
$$

as $\cos 2 x \neq 0$. Finally,

$$
\begin{aligned}
\sin 2 x=\frac{2}{3} & \Rightarrow 2 x=41.8103149,138.1896851(\mathrm{FCD}) \\
& \Rightarrow x=20.90515745,69.09484255(\mathrm{FCD}) \\
& \Rightarrow x=20.9,69.1(1 \mathrm{dp}) .
\end{aligned}
$$

14. (a) A student states:
"if x^{2} is greater than 9 , then x must be greater than $3 . "$
Determine whether or not this statement is true, giving a reason for your answer.

Solution

False: consider $\underline{\underline{x=-4}}$. We have $(-4)^{2}=16$ but $x \ngtr 3$.
(b) Prove that for all positive integers n,

$$
n^{3}+3 n^{2}+2 n
$$

is divisible by 6 .

Solution

We factorise:

$$
\begin{aligned}
& n^{3}+3 n^{2}+2 n= n\left(n^{2}+3 n+2\right) \\
&\left.\begin{array}{ll}
\text { add to: } & +3 \\
\text { multiply to: } & +2
\end{array}\right\}+1,+2 \\
&= n(n+1)(n+2)
\end{aligned}
$$

three consecutive numbers!
So, it is a multiple of 2 and it is a multiple of 3 .
Hence, $n^{3}+3 n^{2}+2 n$ is divisible by $\underline{\underline{6}}$.

