Dr Oliver Mathematics Mathematics Standard Grade: Credit Level
 2011 Paper 1: Non-Calculator 55 minutes

The total number of marks available is 41 .
You must write down all the stages in your working.

1. Evaluate

$$
\begin{equation*}
2.4+5.46 \div 60 \tag{2}
\end{equation*}
$$

Solution

$$
\begin{aligned}
2.4+(5.46 \div 60) & =2.4+(0.546 \div 6) \\
& =2.4+0.091 \\
& =\underline{\underline{2.491}}
\end{aligned}
$$

2. Factorise fully

$$
2 m^{2}-18
$$

Solution

$$
\begin{aligned}
& 2 m^{2}-18=2\left(m^{2}-9\right) \\
&\left.\begin{array}{rl}
\text { add to: } & 0 \\
\text { multiply to: } & -9
\end{array}\right\}-3,+3 \\
&=2\left[m^{2}-3 m+3 m-9\right] \\
&=2[m(m-3)+3(m-3)] \\
&=\underline{\underline{2(m+3)(m-3)} .}
\end{aligned}
$$

3. Given that

$$
\mathrm{f}(x)=5-x^{2}
$$

evaluate $f(-3)$.

Solution

$$
\begin{aligned}
\mathrm{f}(-3) & =5-(-3)^{2} \\
& =5-9 \\
& =\underline{\underline{-4}} .
\end{aligned}
$$

4. Solve the equation

$$
3 x+1=\frac{x-5}{2} .
$$

Solution

$$
\begin{aligned}
3 x+1=\frac{x-5}{2} & \Rightarrow 3 x+1=\frac{1}{2} x-2 \frac{1}{2} \\
& \Rightarrow \frac{5}{2} x=-3 \frac{1}{2} \\
& \Rightarrow \frac{5}{2} x=-\frac{7}{2} \\
& \Rightarrow x=-\frac{7}{5} \text { or }-1 \frac{2}{5} .
\end{aligned}
$$

5. Jamie is going to bake cakes for a party.

He needs $\frac{2}{5}$ of a block of butter for 1 cake.
He has 7 blocks of butter.
How many cakes can Jamie bake?

Solution

$$
\begin{aligned}
7 \div \frac{2}{5} & =7 \times \frac{5}{2} \\
& =\frac{35}{2} \\
& =17 \frac{1}{2}
\end{aligned}
$$

so, he can make $\underline{\underline{17 \text { cakes }}}$
6. A driving examiner looks at her diary for the next 30 days.

She writes down the number of driving tests booked for each day as shown below.

Number of tests booked	0	1	2	3	4	5	6
Frequency	1	1	3	2	9	10	4

(a) Find the median for this data.

Solution

There are

$$
1+1+3+2+9+10+4=30
$$

pieces of data in this set and

$$
\frac{30+1}{2}=15 \frac{1}{2} \mathrm{th}
$$

piece of data.

Number of tests booked	$\leqslant 0$	$\leqslant 1$	$\leqslant 2$	$\leqslant 3$	$\leqslant 4$	$\leqslant 5$	$\leqslant 6$
Cumulative Frequency	1	2	5	7	16	26	30

Hence, it is 4.
(b) Find the probability that more than 4 tests are booked for one day.

Solution

$$
\begin{aligned}
\mathrm{P}(\text { more than } 4) & =\frac{10+4}{30} \\
& =\underline{\underline{\frac{14}{30}}} \\
& =\frac{7}{\underline{15}} .
\end{aligned}
$$

7. Brian, Molly, and their four children visit Waterworld.

The total cost of their tickets is $£ 56$.
Let a pounds be the cost of an adult's ticket and c pounds the cost of a child's ticket.
(a) Write down an equation in terms of a and c to illustrate this information.

Solution

$$
\begin{equation*}
\underline{\underline{2 a+4 c}=56} \tag{1}
\end{equation*}
$$

Sarah and her three children visit Waterworld.
The total cost of their tickets is $£ 36$.
(b) Write down another equation in terms of a and c to illustrate this information.

Solution

$$
\begin{equation*}
a+3 c=36 \tag{2}
\end{equation*}
$$

(c) (i) Calculate the cost of a child's ticket.

Solution

$$
\begin{align*}
(1): & 2 a+4 c=56 \\
2 \times(2): & 2 a+6 c=72 \tag{3}
\end{align*}
$$

(3) - (1):

$$
2 c=16 \Rightarrow \underline{\underline{c=8}} .
$$

(ii) Calculate the cost of an adult's ticket.

Solution

$$
a=36-3 \times 8=\underline{\underline{12}} .
$$

8. A square, $O S Q R$, is shown below.

Q is the point $(8,8)$.
The straight line $T R$ cuts the y-axis at $T(0,12)$ and the x-axis at R.
(a) Find the equation of the line $T R$.

Solution

Well, $R(8,0)$ and the gradient of $T R$ is

$$
\frac{12-0}{0-8}=-\frac{3}{2} .
$$

Finally, the equation of the line $T R$ is

$$
\begin{aligned}
y-12=-\frac{3}{2}(x-0) & \Rightarrow y-12=-\frac{3}{2} x \\
& \Rightarrow y=-\frac{3}{2} x+12
\end{aligned}
$$

The line $T R$ also cuts $S Q$ at P.
(b) Find the coordinates of P.

Solution

$$
\begin{aligned}
8=-\frac{3}{2} x+12 & \Rightarrow-\frac{3}{2} x=-4 \\
& \Rightarrow 3 x=8 \\
& \Rightarrow x=2 \frac{2}{3}
\end{aligned}
$$

hence, $\underline{\left.\underline{P\left(2 \frac{2}{3}\right.}, 8\right)}$.
9. (a) Simplify

$$
\begin{equation*}
2 a \times a^{-4} . \tag{1}
\end{equation*}
$$

$$
2 u \times a
$$

Solution

$$
2 a \times a^{-4}=\underline{\underline{2 a^{-3}}} .
$$

(b) Solve for x,

$$
\begin{equation*}
\sqrt{x}+\sqrt{18}=4 \sqrt{2} . \tag{3}
\end{equation*}
$$

Solution

$$
\begin{aligned}
\sqrt{x}+\sqrt{18}=4 \sqrt{2} & \Rightarrow \sqrt{x}=4 \sqrt{2}-\sqrt{9 \times 2} \\
& \Rightarrow \sqrt{x}=4 \sqrt{2}-(\sqrt{9} \times \sqrt{2}) \\
& \Rightarrow \sqrt{x}=4 \sqrt{2}-3 \sqrt{2} \\
& \Rightarrow \sqrt{x}=\sqrt{2} \\
& \Rightarrow \underline{x=2} .
\end{aligned}
$$

10. In triangle $A B C, A C=4$ centimetres, $B C=10$ centimetres, and angle $B A C=150^{\circ}$.

Given that $\sin 30^{\circ}=\frac{1}{2}$, show that

$$
\sin A B C=\frac{1}{5} .
$$

Solution

$$
\begin{aligned}
\frac{\sin A B C}{A C}=\frac{\sin B A C}{B C} & \Rightarrow \frac{\sin A B C}{4}=\frac{\sin 150^{\circ}}{10} \\
& \Rightarrow \sin A B C=\frac{4 \sin (180-150)^{\circ}}{10} \\
& \Rightarrow \sin A B C=\frac{2 \sin 30^{\circ}}{5} \\
& \Rightarrow \sin A B C=\frac{1}{5},
\end{aligned}
$$

as required.
11. F varies directly as s and inversely as the square of d.
(a) Write down a relationship connecting F, s, and d.

Solution

$$
F \propto \frac{s}{d^{2}} \Rightarrow \underline{\underline{F=\frac{k s}{d^{2}}}}
$$

for some constant, k.
(b) What is the effect on F when s is halved and d is doubled?

Solution

$$
\begin{aligned}
F & =\frac{k\left(\frac{1}{2} s\right)}{(2 d)^{2}} \\
& =\frac{\left.\frac{1}{2} k s\right)}{4 d^{2}} \\
& =\frac{1}{8} \cdot \frac{k s}{d^{2}}
\end{aligned}
$$

hence, F is $\frac{1}{\underline{\underline{8}}}$ of the original value.
12. The sums, S_{2}, S_{3}, and S_{4} of the first 2,3 , and 4 natural numbers are given by

$$
\begin{aligned}
S_{2}=1+2 & =\frac{1}{2}(2 \times 3)=3 \\
S_{3}=1+2+3 & =\frac{1}{2}(3 \times 4)=6 \\
S_{4}=1+2+3+4 & =\frac{1}{2}(4 \times 5)=10 .
\end{aligned}
$$

(a) Find S_{10}, the sum of the first 10 natural numbers.

Solution

$$
S_{10}=\frac{1}{2}(10 \times 11)=\underline{\underline{55}} .
$$

(b) Write down the formula for the sum, S_{n}, of the first n natural numbers.

Solution

$$
S_{n}=\underline{\underline{1} n(n+1)} .
$$

