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You should be able to derive all of these results —
and this means understanding the domains of the

Hyperbolic functions Ellipse Hyperbola Derivatives: Inverse Functions
| el _ e It a > b then 2 2 ;U_Q_y_Q_l d | 1
sinh o = LY ! 22 T — (arcsin x) =
2 2y . @ da V1 - 22
et L e 7 , Hinse with a is a hyperbola with J |
_ is an e .
Cosh T = 2 p 5 ) - eccentricity e > 1 such that b* = a*e® - 1), —(arccos x) = - 5
sinhr  ef _e—T 2T _ - eccentricity 0 < e < 1 such that b° = a%(1 - e9), two foct. at @e.0) and (_ae. 0 dx \/ 1 _
_ ' _ B _ T : - ) 9 —ue, V), d 1
N T @ rer il * two foct, at (ae, () and (-ae, 0), - two directrices, x = ¢ and z = -2 - larctan x) -
1 2 - two directrices, r = ¢ and z = -¢ . L ¢ dr L+
coseche = ———=——— 720 " | " ‘ 96’ 1 bain 0 = parametric equations x = asec and y = btan 0, d (arsinh ) - 1
St € _26 PAtaICthit SUaliois L = athebrald ¥ = b=y, =or x — acosht and y = bsinht (although this will dx B \/ 211
sechz = coshr €%+ e@ oo @ Y G only parameterise one branch of the hyperbola), d (arcosh ) — 1
oth o cosh @ ) e’ +e " ) e*’ 11 0 ) \ ‘ = asymptotes y = Sx and y = —ga;‘. dx : \/xQ ~1
~sinhz e*-e* e _ 1’ -/ (_ae. 0 ae. 0) )\ ; ;
E ( ) ) (/7)‘ T Y = _EZE Y = Ex @ (artanh ZC) = | 2

L @
« In order to define the inverse tunctions, however,
we sometimes have to restrict the domain.
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