Hyperbolic functions

$\sinh x =$	$\frac{e^x - e^{-x}}{2}$		
$\cosh x =$	$\frac{e^x + e^{-x}}{2}$		
$\tanh x =$	$\frac{\sinh x}{\cosh x} \equiv$	$\frac{e^x - e^{-x}}{e^x + e^{-x}} \equiv$	$= \frac{e^{2x} - 1}{e^{2x} + 1}$
$\operatorname{cosech} x =$	$\frac{1}{\sinh x} \equiv$	$\frac{2}{e^x - e^{-x}}, z$	$x \neq 0$
$\operatorname{sech} x =$	$\frac{1}{\cosh x} \equiv$	$\frac{2}{e^x + e^{-x}}$	
$\operatorname{coth} x =$	$\frac{\cosh x}{\sinh x} \equiv$	$\frac{e^x + e^{-x}}{e^x - e^{-x}} \equiv$	$=\frac{e^{2x}+1}{e^{2x}-1}, \ x\neq 0$

• In order to define the inverse functions, however, we sometimes have to restrict the domain.

Function	Domain	Range
$\sinh x$	$x \in \mathbb{R}$	$x \in \mathbb{R}$
$\operatorname{arsinh} x$	$x \in \mathbb{R}$	$\mathcal{X} \in \mathbb{R}$
$\cosh x$	$x \ge 0$	$x \ge 1$
$\operatorname{arcosh} x$	$x \ge 1$	$x \ge 0$
$\tanh x$	$x \in \mathbb{R}$	$ \mathcal{X} < 1$
$\operatorname{artanh} x$	$ \mathcal{X} < 1$	$\mathcal{X} \in \mathbb{R}$
$\operatorname{cosech} x$	$x \neq 0$	$x \neq 0$
$\operatorname{arcosech} x$	$x \neq 0$	$x \neq 0$
$\operatorname{sech} x$	$x \ge 0$	$0 < x \leq 1$
$\operatorname{arsech} x$	$0 < x \leq 1$	$x \ge 0$
$\coth x$	$x \neq 0$	$ \mathcal{X} > 1$
$\operatorname{arcoth} x$	$ \mathcal{X} > 1$	$x \neq 0$
$\operatorname{arsinh} x = \ln x$	$\left(x + \sqrt{x^2 + x^2}\right)$	1)
$\operatorname{arcosh} x = \ln x$	$\left(x + \sqrt{x^2} - \right)$	$1), x \ge 1$
$\operatorname{artanh} x = \frac{1}{2} \operatorname{l}$	$n\left(\frac{1+x}{1-x}\right),$	x < 1
$\operatorname{arcosech} x = \ln x$	$\left(\frac{1+\sqrt{x^2}+x}{x}\right)$	$\left(\frac{1}{2}\right)$
$\operatorname{arsech} x = \ln x$	$\left(rac{1+\sqrt{1-x}}{x} ight)$	$\left(\frac{x^2}{2}\right), \ 0 < x \leq 1$
$\operatorname{arcoth} x = \frac{1}{2}l$	$n\left(rac{x+1}{x-1} ight),$	x > 1
need to be able	to use Osk	oorn's Rule

• You to convert a trigonometric identity into its hyperbolic equivalent. For example,

 $\cos^2 x + \sin^2 x \equiv 1 \rightarrow \cosh^2 x - \sinh^2 x \equiv 1$

Further Pure Mathematics 3: Part 1

Dr Oliver Further Mathematics

Ellipse

If a > b then

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

is an **ellipse** with

- eccentricity 0 < e < 1 such that $b^2 = a^2(1 e^2)$,
- two foci, at (ae, 0) and (-ae, 0),
- two directrices, $x = \frac{a}{e}$ and $x = -\frac{a}{e}$,
- parametric equations $x = a \cos \theta$ and $y = b \sin \theta$.

If a < b then

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

is an **ellipse** with

- eccentricity 0 < e < 1 such that $a^2 = b^2(1 e^2)$,
- two foci, at (0, ae) and (0, -ae),
- two directrices, $y = \frac{a}{e}$ and $y = -\frac{a}{e}$,
- parametric equations $x = a \cos \theta$ and $y = b \sin \theta$.

- You should be able to derive the standard results for the equations of the tangents and the normals to the ellipse using parametric equations.
- You should be able to derive the condition that the line y = mx + c is a tangent to the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

if $a^2m^2 + b^2 = c^2$.

Hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

is a **hyperbola** with • eccentricity e > 1 such that $b^2 = a^2(e^2 - 1)$, • two foci, at (ae, 0) and (-ae, 0), • two directrices, $x = \frac{a}{e}$ and $x = -\frac{a}{e}$, • parametric equations $x = a \sec \theta$ and $y = b \tan \theta$, • or $x = a \cosh t$ and $y = b \sinh t$ (although this will only parameterise one branch of the hyperbola), • asymptotes $y = \frac{b}{a}x$ and $y = -\frac{b}{a}x$.

• You should be able to derive the standard results for the equations of the tangents and the normals to the hyperbola using parametric equations. • You should be able to derive the condition that

the line y = mx + c is a tangent to the hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

f
$$b^2 + c^2 = a^2 m^2$$
.

Differentiation: Hyperbolic Functions

$$\frac{d}{dx} (\sinh x) = \cosh x$$
$$\frac{d}{dx} (\cosh x) = \sinh x$$
$$\frac{d}{dx} (\cosh x) = \operatorname{sech}^2 x$$
$$\frac{d}{dx} (\operatorname{cosech} x) = -\operatorname{cosech} x \coth x$$
$$\frac{d}{dx} (\operatorname{sech} x) = -\operatorname{sech} x \tanh x$$
$$\frac{d}{dx} (\operatorname{coth} x) = -\operatorname{cosech}^2 x$$

You should be able to derive all of these results and this means understanding the domains of the inverse functions. For example,

Although the derivatives of the $\operatorname{arccosec} x$, $\operatorname{arcsec} x$, and $\operatorname{arccot} x$ (as well as the hyperbolic equivalents) are not required for Further Pure Mathematics 3 you are encouraged to work through their derivatives as a measure of the extent to which you understand the domains and ranges of these functions.

Derivatives: Inverse Functions

$\frac{\mathrm{d}}{\mathrm{d}x}(\arcsin x)$	_	$\frac{1}{\sqrt{1-x^2}}$
$\frac{\mathrm{d}}{\mathrm{d}x}(\arccos x)$	_	$-\frac{1}{\sqrt{1-x^2}}$
$\frac{\mathrm{d}}{\mathrm{d}x}$ (arctan x)	_	$\frac{1}{1+x^2}$
$\frac{\mathrm{d}}{\mathrm{d}x}(\operatorname{arsinh} x)$	_	$\frac{1}{\sqrt{x^2+1}}$
$\frac{\mathrm{d}}{\mathrm{d}x}(\operatorname{arcosh} x)$	=	$rac{1}{\sqrt{x^2-1}}$
$\frac{\mathrm{d}}{\mathrm{d}x}$ (artanh x)	—	$\frac{1}{1-x^2}$

$$y = \arcsin x$$

$$\Rightarrow \quad x = \sin y$$

$$\Rightarrow \quad \frac{\mathrm{d}x}{\mathrm{d}y} = \cos y$$

$$\Rightarrow \quad \frac{\mathrm{d}x}{\mathrm{d}y} = \sqrt{1 - \sin^2 y}$$

$$\Rightarrow \quad \frac{\mathrm{d}x}{\mathrm{d}y} = \sqrt{1 - x^2}$$

$$\Rightarrow \quad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\sqrt{1 - x^2}}.$$

The $\arcsin x$ function has domain $-1 \leq x \leq 1$ and range $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$. For these values, $\cos y \geq 0$ so we can legitimately replace $\cos y$ with the non-negative expression $\sqrt{1-\sin^2 y}$.