## Further Pure Mathematics 3: Part 1

Dr Oliver

## Further Mathematics

$$
\begin{aligned}
\sinh x & \equiv \frac{e^{x}-e^{-x}}{2} \\
\cosh x & \equiv \frac{e^{x}+e^{-x}}{2} \\
\tanh x & \equiv \frac{\sinh x}{\cosh x} \equiv \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} \equiv \frac{e^{2 x}-1}{e^{2 x}+1} \\
\operatorname{cosech} x & \equiv \frac{1}{\sinh x} \equiv \frac{2}{e^{x}-e^{-x}}, x \neq 0 \\
\operatorname{sech} x & \equiv \frac{1}{\cosh x} \equiv \frac{2}{e^{x}+e^{-x}} \\
\operatorname{coth} x & \equiv \frac{\cosh x}{\sinh x} \equiv \frac{e^{x}+e^{-x}}{e^{x}-e^{-x}} \equiv \frac{e^{2 x}+1}{e^{2 x}-1}, x \neq 0
\end{aligned}
$$

- In order to define the inverse functions, however, we sometimes have to restrict the domain.

| Function | Domain | Range |
| :--- | :--- | :--- |
| $\sinh x$ | $x \in \mathbb{R}$ | $x \in \mathbb{R}$ |
| $\operatorname{arsinh} x$ | $x \in \mathbb{R}$ | $x \in \mathbb{R}$ |
| $\cosh x$ | $x \geqslant 0$ | $x \geqslant 1$ |
| $\operatorname{arcosh} x$ | $x \geqslant 1$ | $x \geqslant 0$ |
| $\tanh x$ | $x \in \mathbb{R}$ | $\|x\|<1$ |
| $\operatorname{artanh} x$ | $\|x\|<1$ | $x \in \mathbb{R}$ |
| $\operatorname{cosech} x$ | $x \neq 0$ | $x \neq 0$ |
| arcosech $x$ | $x \neq 0$ | $x \neq 0$ |
| $\operatorname{sech} x$ | $x \geqslant 0$ | $0<x \leqslant 1$ |
| $\operatorname{arsech} x$ | $0<x \leqslant 1$ | $x \geqslant 0$ |
| $\operatorname{coth} x$ | $x \neq 0$ | $\|x\|>1$ |
| $\operatorname{arcoth} x$ | $\|x\|>1$ | $x \neq 0$ |
| $\operatorname{arsinh} x=\ln \left(x+\sqrt{x^{2}+1}\right)$ |  |  |
| $\operatorname{arcosh} x=\ln \left(x+\sqrt{x^{2}-1}\right), x \geqslant 1$ |  |  |
| $\operatorname{artanh} x=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right),\|x\|<1$ |  |  |
| $\operatorname{arcosech} x=\ln \left(\frac{1+\sqrt{x^{2}+1}}{x}\right)$ |  |  |
| $\operatorname{arsech} x=\ln \left(\frac{1+\sqrt{1-x^{2}}}{x}\right), 0<x \leqslant 1$ |  |  |
| $\operatorname{arcoth} x=\frac{1}{2} \ln \left(\frac{x+1}{x-1}\right),\|x\|>1$ |  |  |

- You need to be able to use Osborn's Rule to convert a trigonometric identity into its hyperbolic equivalent. For example,

$$
\cos ^{2} x+\sin ^{2} x \equiv 1 \rightarrow \cosh ^{2} x-\sinh ^{2} x \equiv 1
$$

## Ellipse

If $a>b$ then

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

is an ellipse with

- eccentricity $0<e<1$ such that $b^{2}=a^{2}\left(1-e^{2}\right)$,
- two foci, at $(a e, 0)$ and ( $-a e, 0$ ),
- two directrices, $x=\frac{a}{e}$ and $x=-\frac{a}{e}$,
- parametric equations $x=a \cos \theta$ and $y=b \sin \theta$


If $a<b$ then

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

is an ellipse with

- eccentricity $0<e<1$ such that $a^{2}=b^{2}\left(1-e^{2}\right)$,
- two foci, at $(0, a e)$ and $(0,-a e)$,
- two directrices, $y=\frac{a}{e}$ and $y=-\frac{a}{e}$,
- parametric equations $x=a \cos \theta$ and $y=b \sin \theta$

- You should be able to derive the standard results for the equations of the tangents and the normals to the ellipse using parametric equations.
- You should be able to derive the condition that the line $y=m x+c$ is a tangent to the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

if $a^{2} m^{2}+b^{2}=c^{2}$.

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

is a hyperbola with

- eccentricity $e>1$ such that $b^{2}=a^{2}\left(e^{2}-1\right)$,
- two foci, at (ae, 0) and (-ae, 0),
- two directrices, $x=\frac{a}{e}$ and $x=-\frac{a}{e}$,
- parametric equations $x=a \sec \theta$ and $y=b \tan \theta$, - or $x=a \cosh t$ and $y=b \sinh t$ (although this will only parameterise one branch of the hyperbola), - asymptotes $y=\frac{b}{a} x$ and $y=-\frac{b}{a} x$.

- You should be able to derive the standard results for the equations of the tangents and the normals to the hyperbola using parametric equations.
- You should be able to derive the condition that
the line $y=m x+c$ is a tangent to the hyperbola

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

if $b^{2}+c^{2}=a^{2} m^{2}$
Differentiation: Hyperbolic
Functions

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\sinh x) & =\cosh x \\
\frac{\mathrm{~d}}{\mathrm{~d} x}(\cosh x) & =\sinh x \\
\frac{\mathrm{~d}}{\mathrm{~d} x}(\tanh x) & =\operatorname{sech}^{2} x \\
\frac{\mathrm{~d}}{\mathrm{~d} x}(\operatorname{cosech} x) & =-\operatorname{cosech} x \operatorname{coth} x \\
\frac{\mathrm{~d}}{\mathrm{~d} x}(\operatorname{sech} x) & =-\operatorname{sech} x \tanh x \\
\frac{\mathrm{~d}}{\mathrm{~d} x}(\operatorname{coth} x) & =-\operatorname{cosech}^{2} x
\end{aligned}
$$

Derivatives: Inverse Functions

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\arcsin x) & =\frac{1}{\sqrt{1-x^{2}}} \\
\frac{\mathrm{~d}}{\mathrm{~d} x}(\arccos x) & =-\frac{1}{\sqrt{1-x^{2}}} \\
\frac{\mathrm{~d}}{\mathrm{~d} x}(\arctan x) & =\frac{1}{1+x^{2}} \\
\frac{\mathrm{~d}}{\mathrm{~d} x}(\operatorname{arsinh} x) & =\frac{1}{\sqrt{x^{2}+1}} \\
\frac{\mathrm{~d}}{\mathrm{~d} x}(\operatorname{arcosh} x) & =\frac{1}{\sqrt{x^{2}-1}} \\
\frac{\mathrm{~d}}{\mathrm{~d} x}(\operatorname{artanh} x) & =\frac{1}{1-x^{2}}
\end{aligned}
$$

You should be able to derive all of these results and this means understanding the domains of the inverse functions. For example,

$$
y=\arcsin x
$$

$\Rightarrow \quad x=\sin y$
$\Rightarrow \quad \frac{\mathrm{d} x}{\mathrm{~d} y}=\cos y$
$\Rightarrow \quad \frac{\mathrm{d} x}{\mathrm{~d} y}=\sqrt{1-\sin ^{2} y}$
$\Rightarrow \quad \frac{\mathrm{d} x}{\mathrm{~d} y}=\sqrt{1-x^{2}}$
$\Rightarrow \quad \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{\sqrt{1-x^{2}}}$.
The $\arcsin x$ function has domain $-1 \leqslant x \leqslant 1$ and range $-\frac{\pi}{2} \leqslant y \leqslant \frac{\pi}{2}$. For these values, $\cos y \geqslant 0$ so we can legitimately replace $\cos y$ with the non-negative expression $\sqrt{1-\sin ^{2} y}$.

Although the derivatives of the $\operatorname{arccosec} x, \operatorname{arcsec} x$, and $\operatorname{arccot} x$ (as well as the hyperbolic equivalents) are not required for Further Pure Mathematics 3 you are encouraged to work through their derivatives as a measure of the extent to which you understand the domains and ranges of these functions.

