Dr Oliver Mathematics OCR FMSQ Additional Mathematics 2017 Paper 2 hours

The total number of marks available is 100 .
You must write down all the stages in your working.
You are permitted to use a scientific or graphical calculator in this paper.
Final answers should be given correct to three significant figures where appropriate.

Section A

1. Solve the inequality

$$
\begin{equation*}
-2<3 x+1<7 \tag{3}
\end{equation*}
$$

2. Find the equation of the line which is perpendicular to the line with equation $2 x+3 y=4$ and which passes through the point $(3,-1)$.
3. Find the equation of the tangent to the curve

$$
\begin{equation*}
y=x^{2}-3 x \tag{4}
\end{equation*}
$$

at the point $(4,4)$.
4. The coordinates of A and B are $(1,5)$ and $(-3,7)$ respectively.
(a) Calculate the exact length of $A B$.
(b) Find the coordinates of the midpoint of $A B$.
5. (a) Find the equation of the circle which has its centre at the origin and passes through the point $(1,7)$.
(b) Find the coordinates of the two points where the line $2 x+y=15$ cuts this circle.
6. You are given that the equation

$$
x^{3}-x^{2}-10 x+6=0
$$

has two non-integer positive roots and one negative integer root.
(a) Using the factor theorem, find the negative root.
(b) Hence solve the equation.
7. (a) Find

$$
\begin{equation*}
\int_{3}^{5}\left(x^{2}-7\right) \mathrm{d} x \tag{4}
\end{equation*}
$$

(b) Explain by means of a sketch why the area between the curve $y=x^{2}-7$ and the lines $x=2$ and $x=5$ is not

$$
\begin{equation*}
\int_{3}^{5}\left(x^{2}-7\right) \mathrm{d} x \tag{2}
\end{equation*}
$$

8. Four ordinary six-sided dice are rolled. Find the probability that at least 2 sixes are obtained.
9. A car moves from rest away from traffic lights such that after t seconds its velocity, $v \mathrm{~ms}^{-1}$, is given by

$$
\begin{equation*}
v=\frac{7}{128}\left(12 t^{2}-t^{3}\right) . \tag{3}
\end{equation*}
$$

(a) Show that the acceleration is 0 when $t=0$ and $t=8$.
(b) Find the distance travelled in the first 8 seconds.
10. The triangle shown in the diagram below is such that $A B=c, B C=a$, and $C A=b$.

D is the midpoint of the line $B C$ so that $B D=D C=\frac{1}{2} a$ and $A D=d$.
(a) Write down a formula for $\cos A D C$ in terms of d, b, and a.
(b) Write down a formula for $\cos A D B$ in terms of d, c, and a.
(c) Using the property that connects angles $A D B$ and $A D C$, show that

$$
\begin{equation*}
d^{2}=\frac{2 b^{2}+2 c^{2}-a^{2}}{4} . \tag{3}
\end{equation*}
$$

(d) In the triangle $A B C$ where $A B=9, A C=7$, and $B C=10$, find the exact length of the line from A to the midpoint of $B C$.

Section B

11. A farmer conducts a trial on plots of land to decide what amounts of fertiliser will yield the greatest crop. He knows that if he uses no fertiliser then the average yield is 24 tonnes per plot. He finds from his trial that if he uses 2 kg per plot then the average yield is 34 tonnes and if he uses 4 kg per plot then the average yield is 32 tonnes. All plots in the trial have the same area. He decides to use the equation

$$
y=-x^{3}+a x^{2}+b x+c
$$

where the amount of fertiliser, x, in kg produces a yield, y, in tonnes of crop.
(a) Show that $c=24$.
(b) Using the data above, show that

$$
y=-x^{3}+\frac{9}{2} x^{2}+24
$$

(c) Using calculus, find the amount of fertiliser that should be used to maximise the yield and find the yield for this amount of fertiliser.
12. A school wishes to transport students and teachers totalling 300 people to a concert. It uses a coach firm that can provide minibuses which can seat 10 or coaches that can seat 30. The coach firm has 15 minibuses and 8 coaches that it can hire out.

Let x be the number of minibuses that the school hires and y be the number of coaches the school hires.
(a) Write down an inequality in x and y that must be met in order to transport the students and teachers.
(b) State two more inequalities regarding the maximum number of each vehicle that can be hired.

It costs $£ 100$ to hire a minibus and $£ 150$ to hire a coach. The school allocates a maximum of $£ 2400$ for the hire of the vehicles.
(c) Write down another inequality to represent this cost requirement.
(d) Plot the 4 inequalities on the grid provided. You should shade the region that does not satisfy the inequalities.

One teacher suggests that the best arrangement is to hire as many minibuses as possible.
(e) From your graph find the combination of minibuses and coaches that achieves this for as small a cost as possible and the number of vehicles used.

The organiser decides, however, to use the combination of coaches and minibuses that minimises the cost.
(f) From your graph find this combination and the minimum cost.
13. A path $A B$ crosses a section of moorland in an east-west direction. John wishes to walk from A to a point C which is due north of a point O on the path $A B$ as shown in the figure below. A is 4 km due east of O and C is 3 km due north of O.

On the path John can walk at $5 \mathrm{~km} / \mathrm{hr}$ and on the moorland he can only walk at $2 \mathrm{~km} / \mathrm{hr}$.
(a) Find the time he takes to walk from A to C
(i) along the path to O and then up to C across the moor,
(ii) direct from A to C across the moor.

John finds that he can minimise the time taken to walk from A to C if he sets off towards O on the path but at X, a distance of $x \mathrm{~km}$ from A, he turns to walk directly to C across the moor.
(b) (i) Find an expression for the time, t hours, that he takes to complete this walk.
(ii) Using this expression and by substituting values for $x, x=2.6,2.7$, and 2.8, show that there is justification for $x=2.7$ being the distance for which the time taken to walk from A to C is a minimum.
14. A hillside can be modelled by a prism $A B C D E F$, as shown in the figure below. $A B C D$ is a horizontal rectangle and $D C E F$ is a rectangle in the vertical plane. $B C E$ and $A D F$ are right-angled triangles in the vertical plane. The angle of slope $E B C=F A D=28^{\circ}$. $A B=D C=F E=1000 \mathrm{~m}$ and $E C=F D=200 \mathrm{~m}$.

John sets off from B walking up the line $B E$ to a point X where $B X=100 \mathrm{~m}$. He then walks across the slope directly to F, as shown in the diagram. Y is on $F D$ such that $X Y$ is horizontal.
(a) Find the height of X above the base line $B C$.
(b) Find the length $F X$.
(c) Hence calculate the angle of slope of the line $F X$.

