Dr Oliver Mathematics Worked Examples Lower Bounds and Upper Bounds 1

From: Edexcel 2018 November Paper 3H (Calculator)

1. A high speed train travels a distance of 487 km in 3 hours.

The distance is measured correct to the nearest kilometre.
The time is measured correct to the nearest minute.

By considering bounds, work out the average speed, in $\mathrm{km} /$ minute, of the train to a suitable degree of accuracy.
You must show all your working and give a reason for your answer.

Solution

487 km is measured correct to the nearest kilometre:

$$
486.5 \leqslant \text { distance }<487.5 \text {. }
$$

3 hours is 180 minutes and is measured correct to the nearest minute:

$$
179.5 \leqslant \text { time }<180.5
$$

Now,

$$
\begin{aligned}
& \frac{\text { LB distance }}{\text { UB time }}<\text { speed }<\frac{\text { UB distance }}{\text { LB time }} \\
\Rightarrow & \frac{486.5}{180.5}<\text { speed }<\frac{487.5}{179.5} \\
\Rightarrow & 2.695290859<\text { speed }<2.715877437(\mathrm{FCD}) .
\end{aligned}
$$

Next, we approximate it as follows:

Number	Lower Bound	Upper Bound	Agree?
Nearest Natural Number	3	3	\checkmark
1 dp	2.7	2.7	\checkmark
2 dp	2.70	2.72	\boldsymbol{X}

Hence, as the lower and upper bounds agree to 1, but not 2, decimal places,

$$
\text { average speed }=\underline{\underline{2.7} \mathrm{~km} / \text { minute }(1 \mathrm{dp})} \text {. }
$$

