Dr Oliver Mathematics AQA Further Maths Level 2
 June 2014 Paper 1
 1 hour 30 minutes

The total number of marks available is 70 .
You must write down all the stages in your working.
You are not permitted to use a scientific or graphical calculator in this paper.

1. A straight line has gradient -2 and passes through the point $(-3,10)$.

Work out the equation of the line.
Give your answer in the form $y=m x+c$.
2.

$$
\begin{equation*}
y=4 x^{3}-7 x \tag{2}
\end{equation*}
$$

Work out $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
3. A transformation is given by the matrix \mathbf{M}, where

$$
\mathbf{M}=\left(\begin{array}{ll}
1 & a \tag{3}\\
0 & 2
\end{array}\right) .
$$

The image of the point $(b, 5)$ under \mathbf{M} is $(5, b)$.
Work out the values of a and b.
4. Solve

$$
\begin{equation*}
20+w<3(w+2) \tag{3}
\end{equation*}
$$

5.

$$
\begin{aligned}
& \mathrm{f}(x)=10-x^{2}, \text { for all values of } x . \\
& \mathrm{g}(x)=(x+2 a)(x+3) \text { for all values of } x .
\end{aligned}
$$

(a) Circle the correct value of $f(-4)$.

$$
\begin{array}{lllll}
26 & -6 & 36 & 16 & 196 \tag{1}
\end{array}
$$

(b) Write down the range of $\mathrm{f}(x)$.
$\mathrm{g}(0)=24$.
(c) Show that $a=4$.
(d) Hence solve
6. The nth term of a sequence is

$$
\begin{equation*}
\frac{2 n^{2}+7}{3 n^{2}-2} \tag{2}
\end{equation*}
$$

(a) Work out the 7th term.

Give your answer as a fraction in its simplest form.
(b) Show that the limiting value of

$$
\begin{equation*}
\mathrm{f}(x)=\mathrm{g}(x) \tag{4}
\end{equation*}
$$

as $n \rightarrow \infty$ is $\frac{2}{3}$.
7. $A B C D$ is a cyclic quadrilateral.

Not drawn
accurately

Work out the values of x and y.
8. (a) Factorise fully

$$
\begin{equation*}
3 x^{2}-12 \tag{2}
\end{equation*}
$$

(b) Factorise

$$
\begin{equation*}
5 x^{2}+4 x y-12 y^{2} \tag{3}
\end{equation*}
$$

9. $A B C$ is a straight line. $B C$ is 20% of $A C$.

Work out the coordinates of B.
10. Rationalise the denominator of

$$
\begin{equation*}
\frac{8}{3-\sqrt{5}} . \tag{3}
\end{equation*}
$$

Give your answer in the form $a+b \sqrt{5}$, where a and b are integers.
11. Here is triangle $A B C$.

Not drawn accurately
(a) Show that angle $B=60^{\circ}$.
(b) Hence work out the area of triangle $A B C$.
12. The line $x=-9$ is a tangent to the circle, centre $C(8,20)$.

(a) Show that the radius of the circle is 17 .

The circle intersects the y-axis at A and B.
(b) Show that the length $A B$ is 30 .
13. A curve has equation

$$
\begin{equation*}
y=x^{3}-3 x^{2}+5 \tag{4}
\end{equation*}
$$

(a) Show that the curve has a minimum point when $x=2$.
(b) Show that the tangent at the minimum point meets the curve again when $x=-1$.
14. $(x-a)$ is a factor of

$$
x^{3}+2 a x^{2}-a^{2} x-16
$$

(a) Show that $a=2$.
(b) Solve

$$
\begin{equation*}
x^{3}+4 x^{2}-4 x-16 \tag{2}
\end{equation*}
$$

15. Prove that

$$
\begin{equation*}
\frac{\sin \theta-\sin ^{3} \theta}{\cos ^{3} \theta} \equiv \tan \theta \tag{3}
\end{equation*}
$$

16.

$$
\begin{equation*}
2 x^{2}-2 b x+7 a \equiv 2(x-a)^{2}+3 \tag{6}
\end{equation*}
$$

Work out the two possible pairs of values of a and b.

