Dr Oliver Mathematics
 Further Mathematics
 Conic Sections: Parabolas Past Examination Questions

This booklet consists of 26 questions across a variety of examination topics.
The total number of marks available is 284 .

1. The curve C has equation $y^{2}=4 a x$, where a is a positive constant.
(a) Show that an equation of the tangent to C the point $P\left(a p^{2}, 2 a p\right), p \neq 0$, is

$$
\begin{equation*}
y p=x+a p^{2} . \tag{4}
\end{equation*}
$$

Solution

$$
\begin{aligned}
y^{2}=4 a x & \Rightarrow 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=4 a \\
& \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2 a}{y}
\end{aligned}
$$

and, at the point $P\left(a p^{2}, 2 a p\right)$,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 a}{2 a p}=\frac{1}{p} .
$$

Now,

$$
\begin{aligned}
y-2 a p=\frac{1}{p}\left(x-a p^{2}\right) & \Rightarrow y p-2 a p^{2}=x-a p^{2} \\
& \Rightarrow \underline{y p=x+a p^{2} .}
\end{aligned}
$$

The point $Q\left(a q^{2}, 2 a q\right)$ is on C where $p \neq q$ and $q \neq 0$. The chord $P Q$ passes through the focus of C. Show that
(b) $p q=-1$,

Solution

The tangent at Q is $y q=x+a q^{2}$ and $S(a, 0)$ (why?). Now,

$$
\begin{aligned}
\mathrm{m}_{P Q} & =\frac{2 a q-2 a p}{a q^{2}-a p^{2}} \\
& =\frac{2 a(q-p)}{a(q+p)(q-p)} \\
& =\frac{2}{q+p}
\end{aligned}
$$

and

$$
\begin{aligned}
\mathrm{m}_{P S} & =\frac{2 a p-0}{a p^{2}-a} \\
& =\frac{2 p}{p^{2}-1}
\end{aligned}
$$

Now, the two expressions are equal:

$$
\begin{aligned}
\frac{2}{q+p}=\frac{2 p}{p^{2}-1} & \Rightarrow p^{2}-1=p(q+p) \\
& \Rightarrow p^{2}-1=p q+p^{2} \\
& \Rightarrow \underline{\underline{p q=-1}},
\end{aligned}
$$

as required.
(c) the tangent to C at P and the tangent to C at Q meet on the directrix of C.

Solution

The tangent at Q is $y q=x+a q^{2}$. Subtract:

$$
\begin{aligned}
y p-y q=a p^{2}-a q^{2} & \Rightarrow y(p-q)=a(p+q)(p-q) \\
& \Rightarrow y=a(p+q) \\
& \Rightarrow x=a p(p+q)+a p^{2} \\
& \Rightarrow x=a p q \\
& \Rightarrow x=-a ;
\end{aligned}
$$

they meet on the directrix of C.
2. The line with equation $y=m x+c$ is a tangent to the parabola with equation $y^{2}=8 x$.
(a) Show that $m c=2$.

Solution

$$
\begin{aligned}
(m x+c)^{2}=8 x & \Rightarrow m^{2} x^{2}+2 m c x+c^{2}=8 x \\
& \Rightarrow m^{2} x^{2}+(2 m c-8) x+c^{2}=0 .
\end{aligned}
$$

The line with equation $y=m x+c$ is a tangent which means ' $b^{2}-4 a c=0$ ':

$$
\begin{aligned}
(2 m c-8)^{2}-4 \times m^{2} \times c^{2}=0 & \Rightarrow\left(4 m^{2} c^{2}-32 m c+64\right)-4 m^{2} c^{2}=0 \\
& \Rightarrow 32 m c=64 \\
& \Rightarrow \underline{\underline{m c=2}} .
\end{aligned}
$$

The lines l_{1} and l_{2} are tangents to both the parabola with equation $y^{2}=4 a x$ and the circle with equation $x^{2}+y^{2}=2$.
(b) Find the equations of l_{1} and l_{2}.

Solution

$$
\begin{aligned}
c=\frac{2}{m} & \Rightarrow x^{2}+\left(m x+\frac{2}{m}\right)^{2}=2 \\
& \Rightarrow x^{2}+\left(m^{2} x^{2}+4 x+\frac{4}{m^{2}}\right)=2 \\
& \Rightarrow\left(1+m^{2}\right) x^{2}+4 x+\frac{4}{m^{2}}-2=0
\end{aligned}
$$

The line with equation $y=m x+c$ is a tangent which means ' $b^{2}-4 a c=0$ ':

$$
\begin{aligned}
& 16-4 \times\left(1+m^{2}\right) \times\left(\frac{4}{m^{2}}-2\right)=0 \\
\Rightarrow & 4=\left(1+m^{2}\right)\left(\frac{4}{m^{2}}-2\right) \\
\Rightarrow & 4=\frac{4}{m^{2}}+4-2-2 m^{2} \\
\Rightarrow & 4 m^{2}=4+2 m^{2}-2 m^{4} \\
\Rightarrow & 2 m^{4}+2 m^{2}-4=0 \\
\Rightarrow & m^{4}+m^{2}-2=0 \\
\Rightarrow & \left(m^{2}+2\right)\left(m^{2}-1\right)=0 \\
\Rightarrow & m= \pm 1 . \\
& m=1 \Rightarrow c=2 \Rightarrow y=x+2 .
\end{aligned}
$$

$\underline{m=1}:$

$$
\underline{m=-1}
$$

$$
m=-1 \Rightarrow c=-2 \Rightarrow y=-x-2
$$

3. The point P lies on the parabola with equation $y^{2}=4 a x$, where a is a positive constant.
(a) Show that an equation of the tangent to the parabola at $P\left(a p^{2}, 2 a p\right)$ is

$$
\begin{equation*}
p y=x+a p^{2} . \tag{5}
\end{equation*}
$$

Solution

$$
\begin{aligned}
y^{2}=4 a x & \Rightarrow 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=4 a \\
& \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2 a}{y}
\end{aligned}
$$

and, at the point $P\left(a p^{2}, 2 a p\right)$,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 a}{2 a p}=\frac{1}{p} .
$$

Now,

$$
\begin{aligned}
y-2 a p=\frac{1}{p}\left(x-a p^{2}\right) & \Rightarrow p y-2 a p^{2}=x-a p^{2} \\
& \Rightarrow \underline{\underline{p y}=x+a p^{2}} .
\end{aligned}
$$

The tangents at the points $P\left(a p^{2}, 2 a p\right)$ and $Q\left(a q^{2}, 2 a q\right)$, where $p \neq 0, q \neq 0$, and $p \neq q$, meet at the point N.
(b) Find the coordinates of N.

Solution

So the tangents at P and Q are given by

$$
p y=x+a p^{2} \text { and } q y=x+a q^{2}
$$

respectively. If we now subtract the second from the first:

$$
\begin{aligned}
p y-q y=\left(x+a p^{2}\right)-\left(x+a q^{2}\right) & \Rightarrow y(p-q)=a p^{2}-a q^{2} \\
& \Rightarrow y(p-q)=a(p+q)(p-q) \\
& \Rightarrow y=a(p+q) ;
\end{aligned}
$$

But now $x=p y-a p^{2}$:

$$
\begin{aligned}
x=p y-a p^{2} & \Rightarrow x=a p(p+q)-a p^{2} \\
& \Rightarrow x=a p^{2}+a p q-a p^{2} \\
& \Rightarrow x=a p q
\end{aligned}
$$

it is $N(a p q, a[p+q])$.

Given further that N lies on the directrix of the parabola,
(c) write down a relationship between p and q.

Solution

The directrix is $x=-a$ which gives

$$
a p q=-a \Rightarrow p q=-1
$$

4. A line joins the point $A(-4 a, 0)$ to the point $P\left(a t^{2}, 2 a t\right)$, where a is a positive constant. As t varies the locus of the midpoint of the line $A P$ is a parabola, C.
(a) Find an equation of C in cartesian form.

Solution

$x=\frac{1}{2}\left(-4 a+a t^{2}\right)$ and $y=\frac{1}{2}(0+2 a t)=a t$. Now,

$$
\begin{aligned}
y^{2} & =(a t)^{2} \\
& =a^{2} \times \frac{2 x+4 a}{a} \\
& =a(2 x+4 a) ;
\end{aligned}
$$

hence,

$$
y^{2}=2 a x+4 a^{2} .
$$

(b) Sketch C.

Solution

(c) Write down the equation of the directrix of C.

Solution

$$
x=-\frac{5}{2} a \text {. }
$$

(d) Write down the coordinates of the focus of C.

Solution

$\underline{\underline{\left(-\frac{3}{2} a, 0\right)} \text {. }}$
5. The curve C has equation $y^{2}=4 a x$ where a is a positive constant.
(a) Show that an equation of the normal to C at the point $P\left(a p^{2}, 2 a p\right), p \neq 0$, is

$$
\begin{equation*}
y+p x=2 a p+a p^{3} . \tag{6}
\end{equation*}
$$

Solution

$$
\begin{aligned}
y^{2}=4 a x & \Rightarrow 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=4 a \\
& \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2 a}{y}
\end{aligned}
$$

and, at the point $P\left(a p^{2}, 2 a p\right)$,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 a}{2 a p}=\frac{1}{p} .
$$

This is when the gradient of the normal is $-p$ and

$$
\begin{aligned}
y-2 a p=-p\left(x-a p^{2}\right) & \Rightarrow y-2 a p=-p x+a p^{3} \\
& \Rightarrow \underline{\underline{y+p x}=2 a p+a p^{3} .}
\end{aligned}
$$

The normal at P meets C again the point $Q\left(a q^{2}, 2 a q\right)$.
(b) Find q in terms of p.

Solution

Substitute Q into the normal:

$$
\begin{aligned}
2 a q+p a q^{2}=2 a p+a p^{3} & \Rightarrow p a p^{2}-a p^{3}=2 a p-2 a q \\
& \Rightarrow a p\left(q^{2}-p^{2}\right)=2 a(p-q) \\
& \Rightarrow a p(q-p)(q+p)=2 a(p-q) \\
& \Rightarrow p(q+p)=-2 \\
& \Rightarrow q+p=-\frac{2}{p} \\
& \Rightarrow q=-\frac{2}{p}-p .
\end{aligned}
$$

Given that the midpoint of $P Q$ has coordinates $\left(\frac{125}{28} a,-3 a\right)$,
(c) use your answer to part (b), or otherwise, to find the value of p.

Solution

The midpoint of $P Q$ is

$$
\left(\frac{a}{2}\left(p^{2}+q^{2}\right), a(p+q)\right) .
$$

So,

$$
\begin{aligned}
a(p+q)=-3 a & \Rightarrow p-\frac{2}{p}-p=-3 \\
& \Rightarrow-\frac{2}{p}=-3 \\
& \Rightarrow p=\frac{2}{3} .
\end{aligned}
$$

6. The point $P\left(a p^{2}, 2 a p\right)$ lies on the parabola M with equation $y^{2}=4 a x$, where a is a positive constant.
(a) Show that an equation of the tangent to the parabola at M at P is

$$
\begin{equation*}
p y=x+a p^{2} . \tag{3}
\end{equation*}
$$

Solution

$$
\begin{aligned}
y^{2}=4 a x & \Rightarrow 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=4 a \\
& \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2 a}{y}
\end{aligned}
$$

and, at the point $P\left(a p^{2}, 2 a p\right)$,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 a}{2 a p}=\frac{1}{p}
$$

Now,

$$
\begin{aligned}
y-2 a p=\frac{1}{p}\left(x-a p^{2}\right) & \Rightarrow p y-2 a p^{2}=x-a p^{2} \\
& \Rightarrow \underline{\underline{p y=x+a p^{2}} .}
\end{aligned}
$$

The point $Q\left(16 a p^{2}, 8 a p\right)$ also lies on M.
(b) Write down an equation of the tangent to M at Q.

Solution

At Q, the parameter equal $4 p$. Hence

$$
(4 p) y=x+a(4 p)^{2} \Rightarrow \underline{\underline{4 p y=x+16 a p^{2}}} .
$$

The tangent at P and the tangent at Q intersect at the point V.
(c) Show that, as p varies, the locus of V is a parabola N with equation

$$
\begin{equation*}
4 y^{2}=25 a x \tag{4}
\end{equation*}
$$

Solution

$$
\begin{aligned}
4 p y & =x+16 a p^{2} \\
p y & =x+a p^{2}
\end{aligned}
$$

Subtract:

$$
3 p y=15 a p^{2} \Rightarrow y=5 a p \Rightarrow x=4 a p^{2}
$$

Now,

$$
\begin{aligned}
4 y^{2} & =4(5 a p)^{2} \\
& =100 a^{2} p^{2} \\
& =25 a\left(4 a p^{2}\right) \\
& =\underline{\underline{25 a x}} .
\end{aligned}
$$

(d) Find the coordinates of the focus of N, and find an equation of the directrix of N.

Solution

$$
4 y^{2}=25 a x \Rightarrow y^{2}=\frac{25}{4} a x=4\left(\frac{25 a}{16}\right) x
$$

The focus is

$$
\underline{\left.\underline{\left(\frac{25 a}{16}\right.}, 0\right)}
$$

and the directrix is

$$
x=-\frac{25 a}{16} .
$$

(e) Sketch M and N on the same diagram, labelling each of them.

7. A parabola C has equation $y^{2}=4 a x$, where a is a constant.
(a) Show that an equation of the normal to C at the point $P\left(a p^{2}, 2 a p\right)$ is

$$
\begin{equation*}
y+p x=2 a p+a p^{3} . \tag{4}
\end{equation*}
$$

Solution

$$
\begin{aligned}
y^{2}=4 a x & \Rightarrow 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=4 a \\
& \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2 a}{y}
\end{aligned}
$$

and, at the point $P\left(a p^{2}, 2 a p\right)$,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 a}{2 a p}=\frac{1}{p} .
$$

This is when the gradient of the normal is $-p$ and

$$
\begin{aligned}
y-2 a p=-p\left(x-a p^{2}\right) & \Rightarrow y-2 a p=-p x+a p^{3} \\
& \Rightarrow \underline{\underline{y+p x=2 a p+a p^{3}} .}
\end{aligned}
$$

The normals to C at the points $P\left(a p^{2}, 2 a p\right)$ and $Q\left(a q^{2}, 2 a q\right), p \neq q$, meet at the point R.
(b) Find, in terms of a, p, and q, the coordinates of R.

Solution

So the normals at P and Q are given by

$$
y+p x=2 a p+a p^{3} \text { and } y+q x=2 a q+a q^{3}
$$

respectively. If we now subtract the second from the first:

$$
\begin{aligned}
& (p-q) x=2 a(p-q)+a\left(p^{3}-q^{3}\right) \\
\Rightarrow & (p-q) x=2 a(p-q)+a(p-q)\left(p^{2}+p q+q^{2}\right) \\
\Rightarrow & x=2 a+a\left(p^{2}+p q+q^{2}\right) \\
\Rightarrow & y=-p\left[2 a+a\left(p^{2}+p q+q^{2}\right)\right]+2 a p+a p^{3} \\
\Rightarrow & y=-2 a p-a p\left(p^{2}+p q+q^{2}\right)+2 a p+a p^{3} \\
\Rightarrow & y=-a p\left(p^{2}+p q+q^{2}\right)+a p^{3} \\
\Rightarrow & y=-a p^{2} q-a p q^{2} \\
\Rightarrow & y=-a p q(p+q)
\end{aligned}
$$

hence $\underline{\underline{R\left(2 a+a\left(p^{2}+p q+q^{2}\right),-a p q(p+q)\right)}}$.

The points P and Q vary such that $p q=3$.
(c) Find, in the form $y^{2}=\mathrm{f}(x)$, an equation of the locus of R.

Solution

$$
p q=3 \Rightarrow x=2 a+a\left(p^{2}+3+q^{2}\right), y=-3 a(p+q)
$$

and

$$
\begin{aligned}
y^{2} & =9 a^{2}(p+q)^{2} \\
& =9 a^{2}\left(p^{2}+2 p q+q^{2}\right) \\
& =9 a^{2}\left(p^{2}+6+q^{2}\right) \\
& =9 a^{2}\left(\frac{x-5 a}{a}+6\right) \\
& =9 a^{2}\left(\frac{x+a}{a}\right) \\
& =\underline{9 a(x+a)}
\end{aligned}
$$

and

$$
\begin{aligned}
x=2 a+a\left(p^{2}+3+q^{2}\right) & \Rightarrow x-2 a=a\left(p^{2}+3+q^{2}\right) \\
& \Rightarrow \frac{x-2 a}{a}=p^{2}+3+q^{2} \\
& \Rightarrow \frac{x-2 a}{a}-3=p^{2}+q^{2} \\
& \Rightarrow \frac{x-2 a}{a}-\frac{3 a}{a}=p^{2}+q^{2} \\
& \Rightarrow \frac{x-5 a}{a}=p^{2}+q^{2} .
\end{aligned}
$$

8. The points $P\left(a p^{2}, 2 a p\right)$ and $Q\left(a q^{2}, 2 a q\right), p \neq q$, lies on the parabola C with equation $y^{2}=4 a x$, where a is a constant.
(a) Show that an equation for the chord $P Q$ is

$$
\begin{equation*}
(p+q) y=2(x+a p q) \tag{3}
\end{equation*}
$$

Solution

The gradient of the chord is

$$
\frac{2 a p-2 a q}{a p^{2}-a q^{2}}=\frac{2 a(p-q)}{a(p-q)(p+q)}=\frac{2}{p+q}
$$

\square
as $p \neq q$. Now,

$$
\begin{aligned}
y-2 a p=\frac{2}{p+q}\left(x-a p^{2}\right) & \Rightarrow(p+q)[y-2 a p]=2\left(x-a p^{2}\right) \\
& \Rightarrow(p+q) y-2 a p(p+q)=2 x-2 a p^{2} \\
& \Rightarrow(p+q) y=2 x-2 a p^{2}+2 a p(p+q) \\
& \Rightarrow(p+q) y=2 x+2 a p q \\
& \Rightarrow \underline{\underline{(p+q) y} \mathbf{y} 2(x+a p q)},
\end{aligned}
$$

as required.

The normals to C at P and Q meet at the point R.
(b) Show that the coordinates of R are

$$
\begin{equation*}
\left(a\left(p^{2}+q^{2}+p q+2\right),-a p q(p+q)\right) . \tag{7}
\end{equation*}
$$

Solution

$$
\begin{aligned}
y^{2}=4 a x & \Rightarrow 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=4 a \\
& \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2 a}{y}
\end{aligned}
$$

and, at the point $P\left(a p^{2}, 2 a p\right)$,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 a}{2 a p}=\frac{1}{p} .
$$

This is when the gradient of the normal is $-p$ and

$$
\begin{aligned}
y-2 a p=-p\left(x-a p^{2}\right) & \Rightarrow y-2 a p=-p x+a p^{3} \\
& \Rightarrow y+p x=2 a p+a p^{3}
\end{aligned}
$$

and

$$
y+q x=2 a q+a q^{3} .
$$

If we now subtract the second from the first:

$$
\begin{aligned}
& (p-q) x=2 a(p-q)+a\left(p^{3}-q^{3}\right) \\
\Rightarrow & (p-q) x=2 a(p-q)+a(p-q)\left(p^{2}+p q+q^{2}\right) \\
\Rightarrow & x=2 a+a\left(p^{2}+p q+q^{2}\right) \\
\Rightarrow & x=a\left(p^{2}+q^{2}+p q+2\right) \\
\Rightarrow & y=-p\left[a\left(p^{2}+q^{2}+p q+2\right)\right]+2 a p+a p^{3} \\
\Rightarrow & y=-2 a p-a p\left(p^{2}+p q+q^{2}\right)+2 a p+a p^{3} \\
\Rightarrow & y=-a p\left(p^{2}+p q+q^{2}\right)+a p^{3} \\
\Rightarrow & y=-a p^{2} q-a p q^{2} \\
\Rightarrow & y=-a p q(p+q) ;
\end{aligned}
$$

hence $\underline{\underline{R\left(a\left(p^{2}+q^{2}+p q+2\right),-a p q(p+q)\right)}}$.

Given that the points P and Q vary such that $P Q$ always passes through the point (5a, 0),
(c) find, in the form $y^{2}=\mathrm{f}(x)$, an equation for the locus of R.

Solution

Use $(p+q) y=2(x+a p q)$:

$$
y=0 \Rightarrow 0=2(5 a+a p q) \Rightarrow p q=-5
$$

and then

$$
x=a\left(p^{2}+q^{2}-3\right) \text { and } y=-5 a(p+q) .
$$

Now,

$$
\begin{aligned}
y^{2} & =[-5 a(p+q)]^{2} \\
& =25 a^{2}(p+q)^{2} \\
& =25 a^{2}\left(p^{2}+2 p q+q^{2}\right) \\
& =25 a^{2}\left(p^{2}+q^{2}-10\right) \\
& =25 a^{2}\left[\left(\frac{x}{a}+3\right)-10\right] \\
& =25 a^{2}\left[\left(\frac{x+3 a}{a}\right)-10\right] \\
& =25 a^{2}\left(\frac{x-7 a}{a}\right) \\
& =\underline{\underline{25 a(x-7 a)} .}
\end{aligned}
$$

9. The parabola C has equation $y^{2}=4 a x$, where a is a positive constant. The point P has coordinates $\left(a p^{2}, 2 a p\right)$.
(a) Show that an equation of the normal to C at the point $P\left(a p^{2}, 2 a p\right)$ is

$$
\begin{equation*}
y+p x=2 a p+a p^{3} . \tag{4}
\end{equation*}
$$

Solution

$$
\begin{aligned}
y^{2}=4 a x & \Rightarrow 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=4 a \\
& \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2 a}{y}
\end{aligned}
$$

and, at the point $P\left(a p^{2}, 2 a p\right)$,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 a}{2 a p}=\frac{1}{p} .
$$

This is when the gradient of the normal is $-p$ and

$$
\begin{aligned}
y-2 a p=-p\left(x-a p^{2}\right) & \Rightarrow y-2 a p=-p x+a p^{3} \\
& \Rightarrow \underline{\underline{y+p x}=2 a p+a p^{3}} .
\end{aligned}
$$

The normal to C at P meets the curve again at Q.
(b) Show that the y-coordinate of Q is $-2 a\left(\frac{2+p^{2}}{p}\right)$.

Solution

$$
\begin{aligned}
y+p x=2 a p+a p^{3} & \Rightarrow y+\frac{p y^{2}}{4 a}=2 a p+a p^{3} \\
& \Rightarrow 4 a y+p y^{2}=8 a^{2} p+4 a^{2} p^{3} \\
& \Rightarrow p y^{2}+4 a y-8 a^{2} p-4 a^{2} p^{3}=0 \\
& \Rightarrow(y-2 a p)\left(p y+4 a+2 p^{2}\right)=0 \\
& \Rightarrow y=2 a p \text { or } y=-2 a\left(\frac{2+p^{2}}{p}\right) .
\end{aligned}
$$

(c) Show that, as p varies, the least distance from P to Q is $6 \sqrt{3} a$.

Solution

$$
\begin{aligned}
y=-2 a\left(\frac{2+p^{2}}{p}\right) & \Rightarrow x=\frac{1}{4 a}\left[-2 a\left(\frac{2+p^{2}}{p}\right)\right]^{2} \\
& \Rightarrow x=a\left(\frac{2+p^{2}}{p}\right)^{2} .
\end{aligned}
$$

Now,

$$
\begin{aligned}
P Q^{2} & =\left[a p^{2}-a\left(\frac{2+p^{2}}{p}\right)^{2}\right]^{2}+\left[2 a p+2 a\left(\frac{2+p^{2}}{p}\right)\right]^{2} \\
& =\left[a p^{2}-\frac{a}{p^{2}}\left(4+4 p^{2}+p^{4}\right)\right]^{2}+\left[2 a p+\frac{2 a}{p}\left(2+p^{2}\right)\right]^{2} \\
& =\left[a p^{2}-\frac{4 a}{p^{2}}-4 a-a p^{2}\right]^{2}+\left[2 a p+\frac{4 a}{p}+2 a p\right]^{2} \\
& =\left[-\frac{4 a}{p^{2}}-4 a\right]^{2}+\left[4 a p+\frac{4 a}{p}\right]^{2} \\
& =\left(\frac{16 a^{2}}{p^{4}}+\frac{32 a^{2}}{p^{2}}+16 a^{2}\right)+\left(16 a^{2} p^{2}+32 a^{2}+\frac{16 a^{2}}{p^{2}}\right) \\
& =\frac{a^{2}}{p^{4}}\left\{\left(16+32 p^{2}+16 p^{4}\right)+\left(16 p^{6}+32 p^{4}+16 p^{2}\right)\right\} \\
& =\frac{a^{2}}{p^{4}}\left(16 p^{6}+48 p^{4}+48 p^{2}+16\right) \\
& =\frac{16 a^{2}}{p^{4}}\left(p^{6}+3 p^{4}+3 p^{2}+1\right) \\
& =\frac{16 a^{2}\left(p^{2}+1\right)^{3}}{p^{4}} .
\end{aligned}
$$

Now,

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}\left(P Q^{2}\right)=0 & \Rightarrow \frac{\mathrm{~d}}{\mathrm{~d} x}\left(\frac{16 a^{2}\left(p^{2}+1\right)^{3}}{p^{4}}\right)=0 \\
& \Rightarrow \frac{16 a^{2}\left[p^{4} \times 6 p\left(p^{2}+1\right)^{2}-\left(p^{2}+1\right)^{3} \times 4 p^{3}\right]}{p^{8}}=0 \\
& \Rightarrow \frac{16 a^{2}\left(p^{2}+1\right)^{2}\left[6 p^{2}-4\left(p^{2}+1\right)\right]}{p^{5}}=0 \\
& \Rightarrow \frac{16 a^{2}\left(p^{2}+1\right)^{2}\left(2 p^{2}-4\right)}{p^{5}}=0 \\
& \Rightarrow \frac{32 a^{2}\left(p^{2}+1\right)^{2}(p+\sqrt{2})(p-\sqrt{2})}{p^{5}}=0 \\
& \Rightarrow p= \pm \sqrt{2} .
\end{aligned}
$$

Substituting $p= \pm \sqrt{2}$ (either one will work), we have

$$
\begin{aligned}
P Q_{\min }^{2}=\frac{16 a^{2}(2+1)^{3}}{4} & \Rightarrow P Q_{\min }^{2}=108 a^{2} \\
& \Rightarrow P Q_{\min }=6 \sqrt{3} a .
\end{aligned}
$$

10. A parabola C has equation $y^{2}=4 a x$, where $a>0$, and the line l has equation $y=m x+c$.

Given that l is a tangent to C,
(a) show that $c=\frac{a}{m}$.

Solution

$$
\begin{aligned}
y^{2}=4 a x & \Rightarrow(m x+c)^{2}=4 a x \\
& \Rightarrow m^{2} x^{2}+2 c m x+c^{2}=4 a x \\
& \Rightarrow m^{2} x^{2}+(2 c m-4 a) x+c^{2}=0 .
\end{aligned}
$$

Now, ' $b^{2}-4 a c=0$ ':

$$
\begin{aligned}
(2 c m-4 a)^{2}-4 c^{2} m^{2}=0 & \Rightarrow\left(4 c^{2} m^{2}-16 a c m+16 a^{2}\right)-4 c^{2} m^{2}=0 \\
& \Rightarrow-16 a c m+16 a^{2}=0 \\
& \Rightarrow 16 a c m=16 a^{2} \\
& \Rightarrow c=\frac{a}{m}
\end{aligned}
$$

The point P has coordinates $(4 a, 5 a)$.
(b) Find equations of the two tangents from P to C.

Solution

The line

$$
y=m x+\frac{a}{m}
$$

goes though $(4 a, 5 a)$:

$$
\begin{aligned}
5 a=4 a m+\frac{a}{m} & \Rightarrow 5=4 m+\frac{1}{m} \\
& \Rightarrow 5 m=4 m^{2}+1 \\
& \Rightarrow 4 m^{2}-5 m+1=0 \\
& \Rightarrow(4 m-1)(m-1)=0 \\
& \Rightarrow m=\frac{1}{4} \text { or } m=1 .
\end{aligned}
$$

$m=\frac{1}{4}:$

$$
c=\frac{a}{\frac{1}{4}}=4 a \Rightarrow \underline{\underline{y=\frac{1}{4}} x+4 a} .
$$

$\underline{m=1}:$

$$
c=\frac{a}{1}=a \Rightarrow \underline{\underline{y=x+a}} .
$$

The tangents from P to C meet at the point R and Q.
(c) Find the distance $R Q$.

Solution

$y=\frac{1}{4} x+4 a$:

$$
\begin{aligned}
y^{2}=4 a x & \Rightarrow\left(\frac{1}{4} x+4 a\right)^{2}=4 a x \\
& \Rightarrow \frac{1}{16} x^{2}+2 a x+16 a^{2}=4 a x \\
& \Rightarrow \frac{1}{16} x^{2}-2 a x+16 a^{2}=0 \\
& \Rightarrow\left(\frac{1}{4} x-4 a\right)^{2}=0 \\
& \Rightarrow x=16 a \\
& \Rightarrow y=\frac{1}{4}(16 a)+4 a=8 a ;
\end{aligned}
$$

the point $R(16 a, 8 a)$.

$$
y=x+a:
$$

$$
\begin{aligned}
y^{2}=4 a x & \Rightarrow(x+a)^{2}=4 a x \\
& \Rightarrow x^{2}+2 a x+a^{2}=4 a x \\
& \Rightarrow x^{2}-2 a x+a^{2}=0 \\
& \Rightarrow(x-a)^{2}=0 \\
& \Rightarrow x=a \\
& \Rightarrow y=a+a=2 a ;
\end{aligned}
$$

the point $Q(a, 2 a)$. Finally,

$$
R Q=\sqrt{(16 a-a)^{2}+(8 a-2 a)^{2}}=\underline{\underline{3 \sqrt{29}} a} .
$$

11. A parabola has equation $y^{2}=4 a x, a>0$. The point $Q\left(a q^{2}, 2 a q\right)$ lies on the parabola.
(a) Show that an equation of the tangent to the parabola at Q is

$$
\begin{equation*}
y q=x+a q^{2} . \tag{4}
\end{equation*}
$$

Solution

$$
\begin{aligned}
y^{2}=4 a x & \Rightarrow 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=4 a \\
& \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2 a}{y}
\end{aligned}
$$

and, at the point $Q\left(a q^{2}, 2 a q\right)$,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 a}{2 a q}=\frac{1}{q} .
$$

Now,

$$
\begin{aligned}
y-2 a q=\frac{1}{q}\left(x-a q^{2}\right) & \Rightarrow y q-2 a q^{2}=x-a q^{2} \\
& \Rightarrow \underline{\underline{y q=x+a q^{2}} .}
\end{aligned}
$$

This tangent meets the y-axis at the point R.
(b) Find an equation of the line l which passes through R and is perpendicular to the tangent at Q.

Solution

$$
x=0 \Rightarrow y q=a q^{2} \Rightarrow y=a q
$$

and so $R(0, a q)$. Now, $m_{T}=-q$ and so

$$
y-a q=-q(x-0) \Rightarrow \underline{\underline{y=}-q x+a q} .
$$

(c) Show that l passes through the focus of the parabola.

Solution

$$
y=0 \Rightarrow 0=-q x+a q \Rightarrow x=a ;
$$

the line l passes through the focus of the parabola.
(d) Find the coordinates of the point where l meets the directrix of the parabola.

Solution

$$
x=-a \Rightarrow y=-q(-a)+a q=2 a q
$$

so the coordinates are $\underline{\underline{(-a, 2 a q)}}$.
12. The parabola C has equation $y^{2}=16 x$.
(a) Verify that the point $P\left(4 t^{2}, 8 t\right)$ is a general point on C.

Solution

$$
y^{2}=(8 t)^{2}=64 t^{2}=16\left(4 t^{2}\right) ;
$$

the point does lie on C.
(b) Write down the coordinates of the focus S of C.

Solution

$$
y^{2}=4 \times 4 \times x: \underline{\underline{(4,0)}} .
$$

(c) Show that the normal to C at P has equation

$$
\begin{equation*}
y+t x=8 t+4 t^{3} . \tag{5}
\end{equation*}
$$

Solution

$$
\begin{aligned}
y^{2}=16 x & \Rightarrow 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=16 \\
& \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{16}{y}
\end{aligned}
$$

and, at the point $P\left(4 t^{2}, 8 t\right)$,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{8 t}{8 t^{2}}=\frac{1}{t}
$$

This is when the gradient of the normal is $-t$ and

$$
\begin{aligned}
y-8 t=-t\left(x-4 t^{2}\right) & \Rightarrow y-8 t=-t x+4 t^{3} \\
& \Rightarrow \underline{\underline{y+t x}=8 t+4 t^{3}} .
\end{aligned}
$$

The normal to C at P meets the x-axis at the point N.
(d) Find the area of triangle $P S N$ in terms of t, giving your answer in its simplest form.

Solution

$$
y=0 \Rightarrow x=8+4 t^{2}
$$

Now,

$$
\text { base of the triangle }=\left(8+4 t^{2}\right)-4=4+4 t^{2}
$$

and
area of the triangle $P S N=\frac{1}{2} \times\left(4+4 t^{2}\right) \times|8 t|$

$$
=\underline{\underline{16|t|\left(1+t^{2}\right)}} .
$$

13. Figure 1 shows a sketch of part of the parabola with equation $y^{2}=12 x$.

Figure 1: $y^{2}=12 x$

The point P on the parabola has x-coordinate $\frac{1}{3}$. The point S is the focus of the parabola.
(a) Write down the coordinates of S.

Solution

$y^{2}=4 \times 3 \times x$ and $S(3,0)$.

The points A and B lie on the directrix of the parabola. The point A is on the x-axis and the y-coordinate of B is positive. Given that $A B P S$ is a trapezium,
(b) calculate the perimeter of $A B P S$.

Solution

$A(-3,0)$ (why?) and

$$
x=\frac{1}{3} \Rightarrow y^{2}=4 \Rightarrow y= \pm 2
$$

hence $B(-3,2)$ and

$$
B P=S P=3 \frac{1}{3} .
$$

So

$$
\begin{aligned}
\text { perimeter } & =6+3 \frac{1}{3}+3 \frac{1}{3}+2 \\
& =\underline{\underline{14 \frac{2}{3}}} .
\end{aligned}
$$

14. The parabola C has equation $y^{2}=20 x$.
(a) Verify that the point $P\left(5 t^{2}, 10 t\right)$ is a general point on C.

Solution

$$
y^{2}=(10 t)^{2}=100 t^{2}=20\left(5 t^{2}\right)
$$

the point does lie on C.

The point A on C has parameter $t=4$. The line l passes through A and also passes through the focus of C.
(b) Find the gradient of l.

Solution

$A(80,40)$ and, for $y^{2}=4 \times 5 \times x, S(5,0)$. Now,

$$
\text { gradient }=\frac{40-0}{80-5}=\frac{8}{\underline{\underline{15}}} .
$$

15. Figure 2 shows a sketch of the parabola C with equation $y^{2}=36 x$.

Figure 2: $y^{2}=36 x$

The point S is the focus of C.
(a) Find the coordinates of S.

Solution
$y^{2}=4 \times 9 \times x$ and hence $\underline{\underline{S(9,0)}}$.
(b) Write down the equation of the directrix of C.

Solution

$\underline{\underline{x=-9}}$.

Figure 2 shows the point P which lies on C, where $y>0$, and the point Q which lies on the the directrix of C. The line segment $Q P$ is parallel to the x-axis. Given that the distance $Q P$ is 25 ,
(c) write down the distance $Q P$,

Solution
 $\underline{\underline{Q P=25}}$.

(d) find the coordinates of P,

Solution

$x=-9+25=16$ and

$$
y^{2}=36 \times 16=576 \Rightarrow y= \pm 24
$$

hence $\underline{\underline{(16,24)}}$.
(e) find the area of the trapezium $O S P Q$.

Solution

$$
\begin{aligned}
\text { Area of the trapezium } & =\frac{1}{2} \times(9+25) \times 24 \\
& =\underline{\underline{408}}
\end{aligned}
$$

16. The parabola C has equation $y^{2}=48 x$. The point $P\left(12 t^{2}, 24 t\right)$ is a general point on C.
(a) Find an equation of the directrix of C.

Solution

$y^{2}=4 \times 12 \times x$ and hence $\underline{\underline{x=-12}}$.
(b) Show that the equation of the tangent to C at $P\left(12 t^{2}, 24 t\right)$ is

$$
\begin{equation*}
x-t y+12 t^{2}=0 \tag{4}
\end{equation*}
$$

Solution

$$
\begin{aligned}
y^{2}=48 x & \Rightarrow 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=48 \\
& \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{24}{y}
\end{aligned}
$$

and, at the point $P\left(12 t^{2}, 24 t\right)$,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{24}{24 t}=\frac{1}{t}
$$

Now,

$$
\begin{aligned}
y-24 t=\frac{1}{t}\left(x-12 t^{2}\right) & \Rightarrow t y-24 t^{2}=x-12 t^{2} \\
& \Rightarrow \underline{\underline{x-t y+12 t^{2}=0}}
\end{aligned}
$$

The tangent to C at the point $(3,12)$ meets the directrix of C at the point X.
(c) Find the coordinates of X.

Solution

$$
x=3 \Rightarrow 12 t^{2}=3 \Rightarrow t= \pm \frac{1}{2}
$$

now, $t=\frac{1}{2}$ (why?) which mean

$$
x-\frac{1}{2} y+3=0 .
$$

Now,

$$
x=-12 \Rightarrow-12-\frac{1}{2} y+3=0 \Rightarrow y=-18
$$

so $\underline{\underline{X(-12,-18)}}$.
17. The parabola C has equation $y^{2}=16 x$. The point $P\left(4 t^{2}, 8 t\right)$ is a general point on C.
(a) Write down the coordinates of the focus F and the equation of the directrix of C.

Solution

$$
y^{2}=4 \times 4 \times x
$$

hence $\underline{\underline{F(4,0)}}$ and $\underline{\underline{x=-4}}$.
(b) Show that the equation of the normal to C is $y+t x=8 t+4 t^{3}$.

Solution

$$
\begin{aligned}
y^{2}=16 x & \Rightarrow 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=16 \\
& \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{16}{y}
\end{aligned}
$$

and, at the point $P\left(4 t^{2}, 8 t\right)$,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{8 t}{8 t^{2}}=\frac{1}{t}
$$

This is when the gradient of the normal is $-t$ and

$$
\begin{aligned}
y-8 t=-t\left(x-4 t^{2}\right) & \Rightarrow y-8 t=-t x+4 t^{3} \\
& \Rightarrow \underline{\underline{y+t x}=8 t+4 t^{3}} .
\end{aligned}
$$

18. Figure 3 shows a sketch of the parabola C with equation $y^{2}=8 x$.

Figure 3: $y^{2}=8 x$

The point P lies on C, where $y>0$, and the point Q lies on C, where $y<0$. The line segment $P Q$ is parallel to the y-axis. Given that the distance $P Q$ is 12 ,
(a) write down the y-coordinate of P,

Solution

$P Q=12 \Rightarrow \underline{\underline{y=6}}$.
(b) find the x-coordinate of P.

Solution

$$
8 x=36 \Rightarrow \underline{x=4.5} .
$$

Figure 3 shows the point S which is the focus of C. The line l passes through the point P and the point S.
(c) Find an equation for l in the form $a x+b y+c=0$, where a, b, and c are integers.

Solution

$y^{2}=4 \times 2 \times x$ and $S(2,0)$. Now,

$$
\text { gradient }=\frac{6-0}{4.5-2}=\frac{12}{5}
$$

and

$$
\begin{aligned}
y-0=\frac{12}{5}(x-2) & \Rightarrow 5 y=12 x-24 \\
& \Rightarrow 12 x-5 y-24=0 .
\end{aligned}
$$

19. Figure 4 shows a sketch of the of the parabola with equation $y^{2}=36 x$.

Figure 4: $y^{2}=36 x$

The point $P(4,12)$ lies on the parabola.
(a) Find an equation for the normal to the parabola at P.

Solution

$$
\begin{aligned}
y^{2}=36 x & \Rightarrow 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=36 \\
& \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{18}{y}
\end{aligned}
$$

and, at the point $P(4,12)$,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{18}{12}=\frac{3}{2}
$$

This is when the gradient of the normal is $-\frac{2}{3}$ and

$$
\begin{aligned}
y-12=-\frac{2}{3}(x-4) & \Rightarrow 3 y-36=-2 x+8 \\
& \Rightarrow \underline{\underline{2 x+3 y-44=0}}
\end{aligned}
$$

This normal meets the x-axis at the point N and S is the focus of the parabola, as shown in Figure 4.
(b) Find the area of triangle $P S T$.

Solution

$$
y=0 \Rightarrow 2 x-44=0
$$

and hence $N(22,0)$. Now, $S(9,0)$ and

$$
\begin{aligned}
\text { area of the triangle } & =\frac{1}{2} \times(22-9) \times 12 \\
& =\underline{\underline{78}} .
\end{aligned}
$$

20. A parabola has equation $y^{2}=4 a x, a>0$. The points $P\left(a p^{2}, 2 a p\right)$ and $Q\left(a q^{2}, 2 a q\right)$ lie on C, where $p \neq 0, q \neq 0$, and $p \neq q$.
(a) Show that the equation of the tangent to parabola at P is

$$
p y-x=a p^{2} .
$$

Solution

$$
\begin{aligned}
y^{2}=4 a x & \Rightarrow 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=4 a \\
& \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2 a}{y}
\end{aligned}
$$

and, at the point P,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 a}{2 a p}=\frac{1}{p} .
$$

Now,

$$
\begin{aligned}
y-2 a p=\frac{1}{p}\left(x-a p^{2}\right) & \Rightarrow p y-2 a p^{2}=x-a p^{2} \\
& \Rightarrow \underline{\underline{p y-x=a p^{2}} .}
\end{aligned}
$$

(b) Write down the equation of the tangent at Q.

Solution

$$
q y-x=a q^{2} .
$$

The tangent at P meets the tangent at Q at the point R.
(c) Find, in terms of p and q, the coordinates of R, giving your answer in their simplest form.

Solution

Subtract:

$$
\begin{aligned}
(p-q) y=a\left(p^{2}-q^{2}\right) & \Rightarrow(p-q) y=a(p+q)(p-q) \\
& \Rightarrow y=a(p+q)
\end{aligned}
$$

and

$$
x=p y-a p^{2}=a p(p+q)-a p^{2}=a p q ;
$$

hence $\underline{\underline{R(a p q, a(p+q))} \text {. }}$

Given that R lies on the directrix of C,
(d) find the value of $p q$.

Solution

$$
-a=a p q \Rightarrow \underline{\underline{p q}=-1}
$$

21. A parabola C has equation $y^{2}=4 a x$, where a is a positive constant. The point $P\left(a t^{2}, 2 a t\right)$ is a general point on C.
(a) Show that the equation of the tangent to C to parabola at $P\left(a t^{2}, 2 a t\right)$ is

$$
\begin{equation*}
t y=x+a t^{2} . \tag{4}
\end{equation*}
$$

Solution

$$
\begin{aligned}
y^{2}=4 a x & \Rightarrow 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=4 a \\
& \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2 a}{y}
\end{aligned}
$$

and, at the point P,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 a}{2 a t}=\frac{1}{t} .
$$

Now,

$$
\begin{aligned}
y-2 a t=\frac{1}{p}\left(x-a t^{2}\right) & \Rightarrow t y-2 a t^{2}=x-a t^{2} \\
& \Rightarrow t y=x+a t^{2}
\end{aligned}
$$

The tangent to C at P meets the y-axis at a point Q.
(b) Find the coordinates of Q.

Solution

$\underline{Q(0, a t)}$.

Given that the point S is the focus of C,
(c) show that $P Q$ is perpendicular to $S Q$.

Solution

$S(a, 0)$,

$$
\frac{2 a t-a t}{a t^{2}-0}=\frac{1}{t},
$$

and

$$
\frac{0-a t}{a-0}=-t
$$

clearly, $\underline{\underline{P Q} \text { is perpendicular to } S Q}$.
22. The points $P\left(4 k^{2}, 8 k\right)$ and $Q\left(k^{2}, 4 k\right)$, where k is a constant, lie on the parabola C with equation $y^{2}=16 x$. The straight line l_{1} passes through the points P and Q.
(a) Show that an equation of the line l_{1} is given by

$$
\begin{equation*}
3 k y-4 x=8 k^{2} \tag{4}
\end{equation*}
$$

Solution

Well,

$$
\text { gradient }=\frac{8 k-4 k}{4 k^{2}-k^{2}}=\frac{4 k}{3 k^{2}}=\frac{4}{3 k}
$$

and

$$
\begin{aligned}
y-8 k=\frac{4}{3 k}\left(x-4 k^{2}\right) & \Rightarrow 3 k(y-8 k)=4\left(x-4 k^{2}\right) \\
& \Rightarrow 3 k y-24 k^{2}=4 x-16 k^{2} \\
& \Rightarrow 3 k y-4 x=8 k^{2} .
\end{aligned}
$$

The line l_{2} is perpendicular to the line l_{1} and passes through the focus of the parabola C. The line l_{2} meets the directrix of C at the point R.
(b) Find, in terms of k, the y-coordinate of the point R.

Solution

The line l_{2} has gradient $-\frac{3 k}{4}$ and it goes through $S(4,0)$ (why?). Now,

$$
y-0=-\frac{3 k}{4}(x-4) \Rightarrow 4 y=-3 k(x-4) \Rightarrow 4 y=-3 k x+12 k
$$

The x-coordinate of R is -4 (why?) and

$$
y=-\frac{3 k}{4}(-4-4)=\underline{\underline{6 k}} .
$$

23. A parabola C has cartesian equation $y^{2}=4 a x, a>0$. The points $P\left(a p^{2}, 2 a p\right)$ and $P^{\prime}\left(a p^{2},-2 a p\right)$ lie on C.
(a) Show that an equation of the normal to C at the point $P\left(a p^{2}, 2 a p\right)$ is

$$
\begin{equation*}
y+p x=2 a p+a p^{3} . \tag{5}
\end{equation*}
$$

Solution

$$
\begin{aligned}
y^{2}=4 a x & \Rightarrow 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=4 a \\
& \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2 a}{y}
\end{aligned}
$$

and, at the point $P\left(a p^{2}, 2 a p\right)$,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 a}{2 a p}=\frac{1}{p} .
$$

This is when the gradient of the normal is $-p$ and

$$
\begin{aligned}
y-2 a p=-p\left(x-a p^{2}\right) & \Rightarrow y-2 a p=-p x+a p^{3} \\
& \Rightarrow \underline{\underline{y+p x}=2 a p+a p^{3} .}
\end{aligned}
$$

(b) Write down an equation of the normal to C at the point P^{\prime}.

Solution

$\underline{\underline{y-p x=-2 a p-a p^{3}}}$.

The normal to C at P meets the normal to P^{\prime} at point Q.
(c) Find, in terms of a and p, the coordinates of Q.

Solution

Add:

$$
2 y=0 \Rightarrow y=0
$$

and

$$
-p x=-2 a p-a p^{3} \Rightarrow x=2 a+a p^{2} ;
$$

$\underline{\underline{R\left(2 a+a p^{2}, 0\right)}}$.

Given that S is the focus of the parabola,
(d) find the area of the quadrilateral $S P Q P^{\prime}$.

Solution

$S(a, 0)$ (why?) and area of the quadrilateral $S P Q P^{\prime}=$ area of the triangle $S P Q$

$$
\begin{aligned}
& =2 \times \frac{1}{2} \times\left(a+a p^{2}\right) \times 2 a p \\
& =\underline{\underline{2 a^{2} p\left(1+p^{2}\right)}} .
\end{aligned}
$$

24. The point $P\left(3 p^{2}, 6 p\right)$ lies on the parabola with equation $y^{2}=12 x$ and the point S is the focus of this parabola.
(a) Prove that $S P=3\left(1+p^{2}\right)$.

Solution

EITHER The focus is $S(3,0)$ and hence

$$
\begin{aligned}
S P & =\sqrt{\left(3 p^{2}-3\right)^{2}+(6 p-0)^{2}} \\
& =\sqrt{9 p^{4}-18 p^{2}+9+36 p^{2}} \\
& =\sqrt{9 p^{4}+18 p^{2}+9} \\
& =\sqrt{9\left(p^{2}+1\right)^{2}} \\
& =\underline{\underline{\left(p^{2}+1\right)}},
\end{aligned}
$$

as required.
OR The directrix has equation $x=-3$ and, if N is the foot of the perpendicular from P to the directrix then $N(-3,6 p)$. So

$$
S P=P N=3 p^{2}-(-3)=3 p^{2}+3=\underline{\underline{3\left(1+p^{2}\right)}} .
$$

The point $Q\left(3 q^{2}, 6 q\right), p \neq q$, also lies on this parabola. The tangent to the parabola at the point P and the tangent to the parabola at the point Q meet at the point R.
(b) Find the equations of these two tangents and hence find the coordinates of the point R, giving the coordinates in their simplest form.

Solution

$$
y^{2}=12 x \Rightarrow 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=12 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{6}{y}
$$

and so the gradient of the tangent at P is $\frac{1}{p}$. So the tangents at P and Q are given by

$$
y-6 p=\frac{1}{p}\left(x-3 p^{2}\right) \text { and } y-6 q=\frac{1}{q}\left(x-3 q^{2}\right)
$$

respectively. If we now subtract the second from the first:

$$
\begin{aligned}
-6 p+6 q=\frac{1}{p}\left(x-3 p^{2}\right)-\frac{1}{q}\left(x-3 q^{2}\right) & \Rightarrow-6 p+6 q=\left(\frac{1}{p}-\frac{1}{q}\right) x-3 p+3 q \\
& \Rightarrow 6(q-p)=\frac{q-p}{p q} x+3(q-p) \\
& \Rightarrow 6=\frac{1}{p q} x+3(\text { since } p \neq q) \\
& \Rightarrow x=3 p q .
\end{aligned}
$$

Using the equation of the tangent at P,

$$
y-6 p=\frac{1}{p}\left(3 p q-3 p^{2}\right) \Rightarrow y-6 p=3 q-3 p \Rightarrow y=3 p+3 q
$$

Hence $\underline{\underline{R(3 p q, 3(p+q))}}$.
(c) Prove that $S R^{2}=S P \times S Q$.

Solution

Using part (a), $S Q=3\left(1+q^{2}\right)$. Now

$$
\begin{aligned}
S R^{2} & =(3 p q-3)^{2}+(3 p+3 q)^{2} \\
& =\left(9 p^{2} q^{2}-12 p q+9\right)+\left(9 p^{2}+12 p q+9 q^{2}\right) \\
& =9+9 p^{2}+9 q^{2}+9 p^{2} q^{2} \\
& =3\left(1+p^{2}\right) \times 3\left(1+q^{2}\right) \\
& =\underline{\underline{S P} \times S Q},
\end{aligned}
$$

as required.
25. Points $P\left(a p^{2}, 2 a p\right)$ and $Q\left(a q^{2}, 2 a q\right)$, where $p^{2} \neq q^{2}$, lie on the parabola $y^{2}=4 a x$.
(a) Show that an equation for the chord $P Q$ is

$$
\begin{equation*}
(p+q) y=2(x+a p q) \tag{5}
\end{equation*}
$$

Solution

The gradient of the chord is

$$
\frac{2 a p-2 a q}{a p^{2}-a q^{2}}=\frac{2 a(p-q)}{a(p-q)(p+q)}=\frac{2}{p+q}
$$

as $p \neq q$. Now,

$$
\begin{aligned}
y-2 a p=\frac{2}{p+q}\left(x-a p^{2}\right) & \Rightarrow(p+q)[y-2 a p]=2\left(x-a p^{2}\right) \\
& \Rightarrow y(p+q)-2 a p(p+q)=2 x-2 a p^{2} \\
& \Rightarrow y(p+q)=2 x-2 a p^{2}+2 a p(p+q) \\
& \Rightarrow y(p+q)=2 x+2 a p q,
\end{aligned}
$$

as required.

Given that this chord passes through the focus of the parabola,
(b) show that $p q=-1$.

Solution

$S(a, 0)$ and

$$
0=2 a+2 a p q \Rightarrow \underline{\underline{p q}=-1}
$$

(c) Using calculus, find the gradient of the tangent to the parabola at P.

Solution

$$
\begin{aligned}
y^{2}=4 a x & \Rightarrow 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=4 a \\
& \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2 a}{y}
\end{aligned}
$$

and, at the point $P\left(a p^{2}, 2 a p\right)$,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 a}{2 a p}=\frac{1}{\underline{\underline{p}}}
$$

(d) Show that the tangent to the parabola at P and the tangent to the parabola at Q are perpendicular.

Solution

At $Q\left(a q^{2}, 2 a q\right)$,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{q} .
$$

The products of the two tangents are

$$
\frac{1}{p} \times \frac{1}{q}=-1
$$

hence, the two tangents are perpendicular.
26. The parabola C has equation $y^{2}=4 a x$, where a is a constant and $a>0$. The point $Q\left(a q^{2}, 2 a q\right), q>0$, lies on the parabola C.
(a) Show that an equation of the tangent to C at Q is

$$
\begin{equation*}
q y=x+a q^{2} . \tag{4}
\end{equation*}
$$

Solution

$$
\begin{aligned}
y^{2}=4 a x & \Rightarrow 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=4 a \\
& \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2 a}{y}
\end{aligned}
$$

and, at the point $Q\left(a q^{2}, 2 a q\right)$,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 a}{2 a q}=\frac{1}{q} .
$$

Now,

$$
\begin{aligned}
y-2 a q=\frac{1}{q}\left(x-a q^{2}\right) & \Rightarrow q y-2 a q^{2}=x-a q^{2} \\
& \Rightarrow q y=x+a q^{2} .
\end{aligned}
$$

The tangent to C at the point Q meets the x-axis at the point $X\left(-\frac{1}{4}, 0\right)$ and meets the directrix of C at the point D.
(b) Find, in terms of a, the coordinates of D.

Solution

$X\left(-\frac{1}{4}, 0\right)$:

$$
\begin{aligned}
0=-\frac{1}{4} a+a q^{2} & \Rightarrow q^{2}=\frac{1}{4} \\
& \Rightarrow q=\frac{1}{2}(\text { as } q>0)
\end{aligned}
$$

Now, $x=-a$:

$$
\begin{aligned}
& \Rightarrow \frac{1}{2} y=-a+\frac{1}{4} a \\
& \Rightarrow \frac{1}{2} y=-\frac{3}{4} a \\
& \Rightarrow y=-\frac{3}{2} a .
\end{aligned}
$$

So, the point is $D\left(-a,-\frac{3}{2} a\right)$.

Given that the point F is the focus of the parabola C,
(c) find the area, in terms of a, of the triangle $F X D$, giving your answer in its simplest form.

Solution

Well, $F(a, 0)$ and

$$
\text { area of the } \begin{aligned}
\triangle F X D & =\frac{1}{2} \times \frac{3}{2} a \times \frac{5}{4} a \\
& =\underline{\underline{\frac{15}{16}} a^{2}} .
\end{aligned}
$$

