Dr Oliver Mathematics Mathematics Integration Part 1 Past Examination Questions

This booklet consists of 44 questions across a variety of examination topics. The total number of marks available is 190.

1. Find
$$\int \left(1 + 3\sqrt{x} - \frac{1}{x^2}\right) \mathrm{d}x.$$
 (4)

2. The gradient of the curve C is given by

$$\frac{\mathrm{d}y}{\mathrm{d}x} = (3x-1)^2.$$

The point P(1,4) lies on C. Find an equation for the curve C in the form y = f(x).

3. Find $\int \left(6x - \frac{4}{x^2}\right) dx.$ (3)

4. (a) Show that
$$\frac{(3-\sqrt{x})^2}{\sqrt{x}}$$
 can be written is $9x^{-\frac{1}{2}} - 6 + x^{\frac{1}{2}}$. (2)

Given that
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{(3-\sqrt{x})^2}{\sqrt{x}}$$
, $x > 0$, and that $y = \frac{2}{3}$ at $x = 1$,

(b) find
$$y$$
 in terms of x . (6)

5. Find
$$\int \left(2x^2 - \frac{6}{x^3}\right) dx.$$
 (3)

6. The curve with equation y = f(x) passes through the point (1,6). Given that

$$f'(x) = 3 + \frac{5x^2 + 2}{x^{\frac{1}{2}}}, \ x > 0,$$

find f(x) and simplify your answer.

7. Find
$$\int \left(6x^2 + 2 + x^{-\frac{1}{2}} \right) dx.$$
 (3)

8. The curve C with equation $y = f(x), x \neq 0$, passes through the point $(3, 7\frac{1}{2})$. Given (5) that $f'(x) = 2x + \frac{3}{x^2}$, find f(x).

(5)

(7)

- 9. (a) Show that $(4 + 3\sqrt{x})^2$ can be written as $16 + k\sqrt{x} + 9x$, where k is a constant to (2) be found.
 - (b) Find $\int (4+3\sqrt{x})^2 \, \mathrm{d}x.$ (3)
- 10. The curve C with equation $y = f(x), x \neq 0$, and the point P(2, 1) lies on C. Given that (5)

$$f'(x) = 3x^2 - 6 - \frac{8}{x^2},$$

find f(x).

- 11. Find $\int (3x^2 + 4\sqrt{x}) \, dx, \, x > 0.$ (3)
- 12. The curve C with equation y = f(x) passes through the point (5,65). Given that (4) $f'(x) = 6x^2 10x 12$, use integration to find f(x).
- 13. Find $\int (3x^2 + 4x^5 7) \, \mathrm{d}x.$
- 14. The curve C with equation y = f(x), x > 0, and $f'(x) = 4x 6\sqrt{x} + \frac{8}{x^2}$. Given that the (4) point P(4, 1) lies on C, find f(x) and simplify your answer.
- 15. Find $\int (2+5x^2) \, \mathrm{d}x$.

16. The gradient of a curve C is given by $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{(x^2+3)^2}{x^2}, x \neq 0.$

(a) Show that $\frac{\mathrm{d}y}{\mathrm{d}x} = x^2 + 6 + 9x^{-2}$. (2)

(6)

The point (3, 20) lies on C.

(b) Find an equation for curve C in the form y = f(x).

17. Find $\int (12x^5 - 8x^3 + 3) dx$, giving each term in its simplest form.

18. The curve has equation y = f(x) and passes through the point (4, 22). Given that

$$f'(x) = 3x^2 - 3x^{\frac{1}{2}} - 7,$$

use integration to find f(x), giving each term in its simplest form.

19. Given that $y = 2x^3 + \frac{3}{x^2}$, $x \neq 0$, find $\int y \, dx$, simplifying each term. (3)

20.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 5x^{-\frac{1}{2}} + x\sqrt{x}.$$

Given that y = 35 at x = 4, find y in terms of x, given each term in its simplest form.

21. Find

$$\int \left(8x^3 + 6x^{\frac{1}{2}} - 5\right) \,\mathrm{d}x,\tag{4}$$

(7)

(5)

(5)

given each term in its simplest form.

22. The curve C has equation y = f(x), x > 0, where

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x - \frac{5}{\sqrt{x}} - 2.$$

Given that the point P(4,5) lies on C, find f(x).

23. Find

$$\int \left(12x^5 - 3x^2 + 4x^{\frac{1}{3}}\right) \,\mathrm{d}x,$$

given each term in its simplest form.

24. The curve with equation y = f(x) passes through the point (-1, 0). Given that (5) $f'(x) = 12x^2 - 8x + 1$,

find f(x).

25. Given that
$$y = 2x^5 + 7 + \frac{1}{x^3}, x \neq 0$$
, find, in its simplest form, $\int y \, \mathrm{d}x$. (5)

- 26. Given that $\frac{6x+3x^{\frac{5}{2}}}{\sqrt{x}}$ can be written in the form $6x^p+3x^q$,
 - (a) write down the value of p and write down the value of q. (2)

Given that
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{6x + 3x^{\frac{5}{2}}}{\sqrt{x}}$$
, and that $y = 90$ when $x = 4$,

- (b) find y in terms of x, simplifying the coefficient of each terms. (5)
- 27. Given that $y = x^4 + 6x^{\frac{1}{2}}$, find, in its simplest form, $\int y \, \mathrm{d}x$. (3)
- 28. The curve with equation y = f(x) passes through the point (2, 10). Given that (5)

$$f'(x) = 3x^2 - 3x + 5,$$

find f(1).

29. Find

$$\int \left(6x^2 + \frac{2}{x^2} + 5\right) \,\mathrm{d}x,\tag{4}$$

giving each term in its simplest form.

30. The point P(4, -1) lies on the curve C with equation y = f(x), x > 0, and (4)

$$f'(x) = \frac{1}{2}x - \frac{6}{\sqrt{x}} + 3$$

Find f(x).

31.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -x^3 + \frac{4x - 5}{2x^3}, \ x \neq 0.$$
(6)

Given that y = 7 at x = 1, find y in terms of x, giving each term in its simplest form.

32. Find

$$\int \left(10x^4 - 4x - \frac{3}{\sqrt{x}}\right) \,\mathrm{d}x,\tag{4}$$

33.

$$f'(x) = \frac{(3-x^2)^2}{x^2}, x \neq 0.$$

$$f'(x) = 9x^{-2} + A + Bx^2,$$
(3)

(4)

(a) Show that

where A and B are constants to be found.

Given that the point (-3, 10) lies on the curve with equation y = f(x),

(b) find f(x). (5)

34. Find

$$\int \left(3x^2 - \frac{4}{x^2}\right) \,\mathrm{d}x,$$

giving each term in its simplest form.

35. The curve with equation y = f(x) passes through the point P(9,0). Given that (6)

$$f'(x) = \frac{x+9}{\sqrt{x}}, x > 0,$$

find f(x).

36. Find

$$\int (8x^3 + 4) \, \mathrm{d}x,\tag{3}$$

giving each term in its simplest form.

37. The curve with equation y = f(x) passes through the point (4,25). Given that (5)

$$f'(x) = \frac{3}{8}x^2 - 10x^{-\frac{1}{2}} + 1, \ x > 0,$$

find f(x), simplifying each term.

38. Given that
$$y = 2x^5 + \frac{6}{\sqrt{x}}$$
, $x > 0$, find, in their simplest form, $\int y \, \mathrm{d}x$. (3)

39.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 6x^{-\frac{1}{2}} + x\sqrt{x}, \ x > 0.$$

Given that y = 37 at x = 4, find y in terms of x, giving each term in its simplest form.

40. Given that
$$y = 4x^3 - \frac{5}{x^2}$$
, $x > 0$, find, in their simplest form, $\int y \, \mathrm{d}x$. (3)

41. The curve with equation y = f(x) passes through the point (4,9). Given that

$$f'(x) = \frac{3\sqrt{x}}{2} - \frac{9}{4\sqrt{x}} + 2, \ x > 0,$$

find f(x), simplifying each term.

42. Find

(4)
$$\int \left(2x^4 - \frac{4}{\sqrt{x}} + 3\right) \,\mathrm{d}x,$$

giving each term in its simplest form.

43. Find

$$\int \left(2x^5 - \frac{1}{4x^3} - 5\right) \,\mathrm{d}x,$$

giving each term in its simplest form.

44. The curve C has equation y = f(x), x > 0, where

$$f'(x) = 30 + \frac{6 - 5x^2}{\sqrt{x}}.$$

Given that the point P(4, -8) lies on C, find f(x), giving each term in its simplest form.

(5)

(4)

(6)

(5)