Dr Oliver Mathematics Mathematics
 Integration Part 1 Past Examination Questions

This booklet consists of 44 questions across a variety of examination topics. The total number of marks available is 190.

1. Find $\int\left(1+3 \sqrt{x}-\frac{1}{x^{2}}\right) \mathrm{d} x$.
2. The gradient of the curve C is given by

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=(3 x-1)^{2} . \tag{5}
\end{equation*}
$$

The point $P(1,4)$ lies on C. Find an equation for the curve C in the form $y=\mathrm{f}(x)$.
3. Find $\int\left(6 x-\frac{4}{x^{2}}\right) \mathrm{d} x$.
4. (a) Show that $\frac{(3-\sqrt{x})^{2}}{\sqrt{x}}$ can be written is $9 x^{-\frac{1}{2}}-6+x^{\frac{1}{2}}$.

Given that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{(3-\sqrt{x})^{2}}{\sqrt{x}}, x>0$, and that $y=\frac{2}{3}$ at $x=1$,
(b) find y in terms of x.
5. Find $\int\left(2 x^{2}-\frac{6}{x^{3}}\right) \mathrm{d} x$.
6. The curve with equation $y=\mathrm{f}(x)$ passes through the point $(1,6)$. Given that

$$
\begin{equation*}
\mathrm{f}^{\prime}(x)=3+\frac{5 x^{2}+2}{x^{\frac{1}{2}}}, x>0 \tag{7}
\end{equation*}
$$

find $\mathrm{f}(x)$ and simplify your answer.
7. Find $\int\left(6 x^{2}+2+x^{-\frac{1}{2}}\right) \mathrm{d} x$.
8. The curve C with equation $y=\mathrm{f}(x), x \neq 0$, passes through the point $\left(3,7 \frac{1}{2}\right)$. Given that $\mathrm{f}^{\prime}(x)=2 x+\frac{3}{x^{2}}$, find $\mathrm{f}(x)$.
9. (a) Show that $(4+3 \sqrt{x})^{2}$ can be written as $16+k \sqrt{x}+9 x$, where k is a constant to be found.
(b) Find $\int(4+3 \sqrt{x})^{2} \mathrm{~d} x$.
10. The curve C with equation $y=\mathrm{f}(x), x \neq 0$, and the point $P(2,1)$ lies on C. Given that

$$
\begin{equation*}
\mathrm{f}^{\prime}(x)=3 x^{2}-6-\frac{8}{x^{2}} \tag{5}
\end{equation*}
$$

find $\mathrm{f}(x)$.
11. Find $\int\left(3 x^{2}+4 \sqrt{x}\right) \mathrm{d} x, x>0$.
12. The curve C with equation $y=\mathrm{f}(x)$ passes through the point $(5,65)$. Given that $\mathrm{f}^{\prime}(x)=6 x^{2}-10 x-12$, use integration to find $\mathrm{f}(x)$.
13. Find $\int\left(3 x^{2}+4 x^{5}-7\right) \mathrm{d} x$.
14. The curve C with equation $y=\mathrm{f}(x), x>0$, and $\mathrm{f}^{\prime}(x)=4 x-6 \sqrt{x}+\frac{8}{x^{2}}$. Given that the point $P(4,1)$ lies on C, find $\mathrm{f}(x)$ and simplify your answer.
15. Find $\int\left(2+5 x^{2}\right) d x$.
16. The gradient of a curve C is given by $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\left(x^{2}+3\right)^{2}}{x^{2}}, x \neq 0$.
(a) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{2}+6+9 x^{-2}$.

The point $(3,20)$ lies on C.
(b) Find an equation for curve C in the form $y=\mathrm{f}(x)$.
17. Find $\int\left(12 x^{5}-8 x^{3}+3\right) \mathrm{d} x$, giving each term in its simplest form.
18. The curve has equation $y=\mathrm{f}(x)$ and passes through the point $(4,22)$. Given that

$$
f^{\prime}(x)=3 x^{2}-3 x^{\frac{1}{2}}-7,
$$

use integration to find $\mathrm{f}(x)$, giving each term in its simplest form.
19. Given that $y=2 x^{3}+\frac{3}{x^{2}}, x \neq 0$, find $\int y \mathrm{~d} x$, simplifying each term.
20.

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=5 x^{-\frac{1}{2}}+x \sqrt{x} . \tag{7}
\end{equation*}
$$

Given that $y=35$ at $x=4$, find y in terms of x, given each term in its simplest form.
21. Find
given each term in its simplest form.
22. The curve C has equation $y=\mathrm{f}(x), x>0$, where

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x-\frac{5}{\sqrt{x}}-2 . \tag{5}
\end{equation*}
$$

Given that the point $P(4,5)$ lies on C, find $\mathrm{f}(x)$.
23. Find

$$
\begin{equation*}
\int\left(12 x^{5}-3 x^{2}+4 x^{\frac{1}{3}}\right) \mathrm{d} x \tag{5}
\end{equation*}
$$

given each term in its simplest form.
24. The curve with equation $y=\mathrm{f}(x)$ passes through the point $(-1,0)$. Given that

$$
\begin{equation*}
\mathrm{f}^{\prime}(x)=12 x^{2}-8 x+1, \tag{5}
\end{equation*}
$$

find $\mathrm{f}(x)$.
25. Given that $y=2 x^{5}+7+\frac{1}{x^{3}}, x \neq 0$, find, in its simplest form, $\int y \mathrm{~d} x$.
26. Given that $\frac{6 x+3 x^{\frac{5}{2}}}{\sqrt{x}}$ can be written in the form $6 x^{p}+3 x^{q}$,
(a) write down the value of p and write down the value of q.

Given that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{6 x+3 x^{\frac{5}{2}}}{\sqrt{x}}$, and that $y=90$ when $x=4$,
(b) find y in terms of x, simplifying the coefficient of each terms.
27. Given that $y=x^{4}+6 x^{\frac{1}{2}}$, find, in its simplest form, $\int y \mathrm{~d} x$.
28. The curve with equation $y=\mathrm{f}(x)$ passes through the point $(2,10)$. Given that

$$
\begin{equation*}
\mathbf{f}^{\prime}(x)=3 x^{2}-3 x+5, \tag{5}
\end{equation*}
$$

find $f(1)$.
29. Find

$$
\int\left(6 x^{2}+\frac{2}{x^{2}}+5\right) \mathrm{d} x
$$

giving each term in its simplest form.
30. The point $P(4,-1)$ lies on the curve C with equation $y=\mathrm{f}(x), x>0$, and

$$
\begin{equation*}
\mathrm{f}^{\prime}(x)=\frac{1}{2} x-\frac{6}{\sqrt{x}}+3 \tag{4}
\end{equation*}
$$

Find $\mathrm{f}(x)$.
31.

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=-x^{3}+\frac{4 x-5}{2 x^{3}}, x \neq 0 . \tag{6}
\end{equation*}
$$

Given that $y=7$ at $x=1$, find y in terms of x, giving each term in its simplest form.
32. Find

$$
\begin{equation*}
\int\left(10 x^{4}-4 x-\frac{3}{\sqrt{x}}\right) \mathrm{d} x \tag{4}
\end{equation*}
$$

giving each term in its simplest form.
33.

$$
\mathrm{f}^{\prime}(x)=\frac{\left(3-x^{2}\right)^{2}}{x^{2}}, x \neq 0
$$

(a) Show that

$$
\begin{equation*}
\mathrm{f}^{\prime}(x)=9 x^{-2}+A+B x^{2}, \tag{3}
\end{equation*}
$$

where A and B are constants to be found.
Given that the point $(-3,10)$ lies on the curve with equation $y=\mathrm{f}(x)$,
(b) find $\mathrm{f}(x)$.
34. Find

$$
\begin{equation*}
\int\left(3 x^{2}-\frac{4}{x^{2}}\right) \mathrm{d} x \tag{4}
\end{equation*}
$$

giving each term in its simplest form.
35. The curve with equation $y=\mathrm{f}(x)$ passes through the point $P(9,0)$. Given that

$$
\begin{equation*}
\mathrm{f}^{\prime}(x)=\frac{x+9}{\sqrt{x}}, x>0, \tag{6}
\end{equation*}
$$

find $\mathrm{f}(x)$.
36. Find
giving each term in its simplest form.
37. The curve with equation $y=\mathrm{f}(x)$ passes through the point $(4,25)$. Given that

$$
\begin{equation*}
\mathrm{f}^{\prime}(x)=\frac{3}{8} x^{2}-10 x^{-\frac{1}{2}}+1, x>0 \tag{5}
\end{equation*}
$$

find $\mathrm{f}(x)$, simplifying each term.
38. Given that $y=2 x^{5}+\frac{6}{\sqrt{x}}, x>0$, find, in their simplest form, $\int y \mathrm{~d} x$.
39.

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=6 x^{-\frac{1}{2}}+x \sqrt{x}, x>0 \tag{6}
\end{equation*}
$$

Given that $y=37$ at $x=4$, find y in terms of x, giving each term in its simplest form.
40. Given that $y=4 x^{3}-\frac{5}{x^{2}}, x>0$, find, in their simplest form, $\int y \mathrm{~d} x$.
41. The curve with equation $y=\mathrm{f}(x)$ passes through the point $(4,9)$. Given that

$$
\begin{equation*}
\mathbf{f}^{\prime}(x)=\frac{3 \sqrt{x}}{2}-\frac{9}{4 \sqrt{x}}+2, x>0 \tag{5}
\end{equation*}
$$

find $\mathrm{f}(x)$, simplifying each term.
42. Find

$$
\begin{equation*}
\int\left(2 x^{4}-\frac{4}{\sqrt{x}}+3\right) \mathrm{d} x \tag{4}
\end{equation*}
$$

giving each term in its simplest form.
43. Find

$$
\begin{equation*}
\int\left(2 x^{5}-\frac{1}{4 x^{3}}-5\right) \mathrm{d} x \tag{4}
\end{equation*}
$$

giving each term in its simplest form.
44. The curve C has equation $y=\mathrm{f}(x), x>0$, where

$$
\begin{equation*}
\mathrm{f}^{\prime}(x)=30+\frac{6-5 x^{2}}{\sqrt{x}} . \tag{5}
\end{equation*}
$$

Given that the point $P(4,-8)$ lies on C, find $\mathrm{f}(x)$, giving each term in its simplest form.

