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Cambridge O Level Additional Mathematics

2004 June Paper 1: Calculator

2 hours

The total number of marks available is 80.
You must write down all the stages in your working.

1. Given that

y “
3x ´ 2

x2 ` 5
,

find

(a) (2)an expression for
dy

dx
,

Solution

Well,

u “ 3x ´ 2 ñ
du

dx
“ 3

v “ x2
` 5 ñ

dv

dx
“ 2x.

Quotient rule:

dy

dx
“

px2 ` 5qp3q ´ p3x ´ 2qp2xq

px2 ` 5q2

“
3x2 ` 15 ´ p6x2 ´ 4xq

px2 ` 5q2

“
3x2 ` 15 ´ 6x2 ` 4x

px2 ` 5q2

“
´3x2 ` 4x ` 15

px2 ` 5q2
.

(b) (2)the x-coordinates of the stationary points.

Solution
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Now,

dy

dx
“ 0 ñ

´3x2 ` 4x ` 15

px2 ` 5q2
“ 0

ñ ´3x2
` 4x ` 15 “ 0

ñ 3x2
´ 4x ´ 15 “ 0

add to: ´4
multiply to: p`3q ˆ p´15q “ ´45

*

´ 9, `5

e.g.,

ñ 3x2
´ 9x ` 5x ´ 15 “ 0

ñ 3xpx ´ 3q ` 5px ´ 3q “ 0

ñ p3x ` 5qpx ´ 3q “ 0

ñ 3x ` 5 “ 0 or x ´ 3 “ 0

ñ x “ ´12
3
or x “ 3.

2. (5)Find the x-coordinates of the three points of intersection of the curve

y “ x3

with the line
y “ 5x ´ 2,

expressing non-integer values in the form

a ˘
?
b,

where a and b are integers.

Solution

Now,
x3

“ 5x ´ 2 ñ x3
´ 5x ` 2 “ 0

and let
fpxq “ x3

´ 5x ` 2.

2
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Next,

fp1q “ 1 ´ 5 ` 2 “ ´2

fp´1q “ ´1 ` 5 ` 2 “ 6

fp2q “ 8 ´ 10 ` 2 “ 0,

and we know that px ´ 2q is a root of fpxq.

Synthetic division:

2 1 0 ´5 2
Ó 2 4 ´2
1 2 ´1 0

and so
x3

´ 5x ` 2 “ px ´ 2qpx2
` 2x ´ 1q.

Now, we will complete the square:

x2
` 2x ´ 1 “ 0 ñ x2

` 2x “ 1

ñ x2
` 2x ` 1 “ 1 ` 1

ñ px ` 1q
2

“ 2

ñ x ` 1 “ ˘
?
2

ñ x “ ´1 ˘
?
2.

Hence, the solutions are
x “ 2, ´1 ˘

?
2.

3. (a) (3)Sketch on the same diagram the graphs of

y “ |2x ` 3| and y “ 1 ´ x.

Solution

3
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x

y

O´1.5 1

1

3

(b) (3)Find the values of x for which

x ` |2x ` 3| “ 1.

Solution

Well,
x ` |2x ` 3| “ 1 ñ |2x ` 3| “ 1 ´ x

and so we look at where the two lines cross.

2x ` 3 “ 1 ´ x:

2x ` 3 “ 1 ´ x ñ 3x “ ´2

ñ x “ ´2
3
.

´p2x ` 3q “ 1 ´ x:

´p2x ` 3q “ 1 ´ x ñ ´2x ´ 3 “ 1 ´ x

ñ ´x “ 4

ñ x “ ´4.

Hence, the values of x are

x “ ´4 or x “ ´2
3
.

4. The function f is defined, for 0˝ ď x ď 360˝, by

fpxq “ a sinpbxq ` c,

4
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where a, b, and c are positive integers.

Given that the amplitude of f is 2 and the period of f is 120˝,

(a) (2)state the value of a and of b.

Solution

Well, a “ 2 and

b “
360

120
“ 3.

Given further that the minimum value of f is ´1,

(b) (1)state the value of c,

Solution

c “ 1.

(c) (3)sketch the graph of f.

Solution

x

y

O 18090 270 360

3

´1

5. (6)The straight line
5y ` 2x “ 1

meets the curve
xy ` 24 “ 0

at the points A and B.

Find the length of AB, correct to one decimal place.

5
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Solution

Well,

xy ` 24 “ 0 ñ xy “ ´24

ñ y “ ´
24

x

and let us insert in to the linear equation:

5y ` 2x “ 1 ñ 5

ˆ

´
24

x

˙

` 2x “ 1

multiply by x:

ñ ´120 ` 2x2
“ x

ñ 2x2
´ x ´ 120 “ 0

add to: ´1
multiply to: p`2q ˆ p´120q “ ´240

*

´ 16, `15

e.g.,

ñ 2x2
´ 16x ` 15x ´ 120 “ 0

ñ 2xpx ´ 8q ` 15px ´ 8q “ 0

ñ p2x ` 15qpx ´ 8q “ 0

ñ 2x ` 15 “ 0 or x ´ 8 “ 0

ñ x “ ´7.5 or x “ 8

ñ y “ 3.2 or y “ ´3;

so, the two points are p´7.5, 3.2q and p8,´3q. Finally,

length “
a

r8 ´ p´7.5qs2 ` p´3 ´ 3.2q2

“
a

p15.5q2 ` p´6.2q2

“
?
240.25 ` 38.44

“
?
278.69

“ 16.694 010 9 (FCD)

“ 16.7 cm (1 dp).

6
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6. (6)The table below shows

• the daily production, in kilograms, of two types, S1 and S2, of sweets from a small
company and

• the percentages of the ingredients A, B, and C required to produce S1 and S2.

A B C Daily Production

Type S1 60 30 10 300
Type S2 50 40 10 240

Given that the costs, in dollars per kilogram, of A, B, and C are 4, 6, and 8 respectively,
use matrix multiplication to calculate the total cost of daily production.

Solution

Well,

`

300 240
˘

ˆ

0.6 0.3 0.1
0.5 0.4 0.1

˙

¨

˝

4
6
8

˛

‚

“
`

300 240
˘

ˆ

5
5.2

˙

“
`

2 748
˘

.

Hence, the total cost of daily production is $2 748.

7. (5)To a cyclist travelling due south on a straight horizontal road at 7 ms´1, the wind
appears to be blowing from the north-east.

Given that the wind has a constant speed of 12 ms´1, find the direction from which the
wind is blowing.

Solution

We will draw a picture:

7
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45˝

135˝

7

12

α˝

β˝

Sine rule:

sinα˝

7
“

sin 135˝

12
ñ sinα˝

“
7 sin 135˝

12
ñ α “ 24.360 654 34 (FCD).

Now,

β “ 180 ´ 135 ´ α

“ 20.639 345 66 (FCD).

Finally, the direction is 020.6˝.

8. (7)A curve has the equation
y “ pax ` 3q lnx,

where x ą 0 and a is a positive constant.

The normal to the curve at the point where the curve crosses the x-axis is parallel to
the line

5y ` x “ 2.

Find the value of a.

Solution

On the x-axis, y “ 0. Which means EITHER ax ` 3 “ 0 OR lnx “ 0. Now,

ax ` 3 “ 0 ñ x “ ´
3

a

but x ą 0. So
lnx “ 0 ñ x “ 1.

8



Dr Oliver 
Mathematics 

 
Dr Oliver 

Mathematics 
 

Dr Oliver 
Mathematics 

 
Dr Oliver 

Mathematics 
 

Dr Oliver 
Mathematics 

 
Dr Oliver 

Mathematics 

Well,

u “ ax ` 3 ñ
du

dx
“ a

v “ lnx ñ
dv

dx
“

1

x
.

Product rule:

dy

dx
“ pax ` 3q

ˆ

1

x

˙

` paqplnxq

“
ax ` 3

x
` a lnx.

Next,

5y ` x “ 2 ñ 5y “ ´x ` 2

ñ y “ ´1
5
x ` 2

5
,

which means the the tangent to the curve is ´1
5
. Finally,

a “ ´
1

´1
5

“ 2.

9. (a) (3)Calculate the term independent of x in the binomial expansion of

ˆ

x ´
1

2x5

˙18

.

Solution

Well,
ˆ

x ´
1

2x5

˙18

ñ
`

x ´ 1
2
x´5

˘18

and the general binomial coefficient is

ˆ

18

r

˙

xr
p´1

2
x´5

q
18´r.

9
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So the term independent of x is

r ´ 5p18 ´ rq “ 0 ñ r ´ 90 ` 5r “ 0

ñ 6r “ 90

ñ r “ 15.

Hence, the term independent of x is

ˆ

18

15

˙

x15
p´1

2
x´5

q
3

“ ´102.

(b) (4)In the binomial expansion of
p1 ` kxq

n,

where n ě 3 and k is a constant, the coefficients of x2 and x3 are equal.

Express k in terms of n.

Solution

Now,

p1 ` kxq
n

“ 1 ` knx ` 1
2
npn ´ 1qpkxq

2
` 1

6
npn ´ 1qpn ´ 2qpkxq

3
` . . .

Next, if the coefficients of x2 and x3 are equal, then

1
2
npn ´ 1qk2

“ 1
6
npn ´ 1qpn ´ 2qk3

ñ 1
2
npn ´ 1qk2

´ 1
6
npn ´ 1qpn ´ 2qk3

“ 0

ñ 3
6
npn ´ 1qk2

´ 1
6
npn ´ 1qpn ´ 2qk3

“ 0

ñ 1
6
npn ´ 1qk2

r3 ´ kpn ´ 2qs “ 0.

We want to express k in terms of n:

3 ´ kpn ´ 2q “ 0 ñ kpn ´ 2q “ 3

ñ k “
3

n ´ 2
.

10. The diagram shows an isosceles triangle ABC in which

• BC “ AC “ 20 cm and

• angle BAC “ 0.7 radians.

10
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DC is an arc of a circle, centre A.

Find, correct to 1 decimal place,

(a) (4)the area of the shaded region,

Solution

Now, =CBA “ 0.7 radians (isosceles triangle) and =ACB “ pπ ´ 1.4q radians.

Area of △ABC:

area “ 1
2

ˆ 20 ˆ 20 ˆ sinpπ ´ 1.4q

“ 200 sinpπ ´ 1.4q.

Area of the shape ACD:

area “ 1
2

ˆ 20 ˆ 20 ˆ 0.7

“ 140.

Finally,

area of the shaded region “ area of △ABC ´ area of the shapeACD

“ 200 sinpπ ´ 1.4q ´ 140

“ 57.089 946 (FCD)

“ 57.1 cm2 (1 dp).

(b) (4)the perimeter of the shaded region.

Solution

Sine rule:

AB

sinACB
“

BC

sinBAC
ñ

AB

sinpπ ´ 1.4q
“

20

sin 0.7

ñ AB “
20 sinpπ ´ 1.4q

sin 0.7
.

11
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and

BD “ AB ´ AD

“
20 sinpπ ´ 1.4q

sin 0.7
´ 20.

Arc CD:

length “ 20 ˆ 0.7

“ 14.

Finally,

perimeter of the shaded region “ BC ` BD ` arc CD

“ 20 `

ˆ

20 sinpπ ´ 1.4q

sin 0.7
´ 20

˙

` 14

“ 44.593 687 49 (FCD)

“ 44.6 cm (1 dp).

11. The diagram shows part of a curve, passing through the points p2, 3.5q and p5, 1.4q.

The gradient of the curve at any point px, yq is

´
a

x3
,

where a is a positive constant.

(a) (5)how that a “ 20 and obtain the equation of the curve.

12
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Solution

Well,

dy

dx
“ ´

a

x3
ñ

dy

dx
“ ´ax´3

ñ y “ ´ap´1
2
x´2

q ` c

ñ y “ 1
2
ax´2

` c,

where c is a constant. Now,

x “ 2, y “ 3.5 ñ 3.5 “ 1
2
ap2´2

q ` c

ñ 3.5 “ 1
8
a ` c

ñ 3.5 ´ 1
8
a “ c.

Next,

x “ 5, y “ 1.4 ñ 1.4 “ 1
2
ap5´2

q ` 3.5 ´ 1
8
a

ñ ´2.1 “ 1
50
a ´ 1

8
a

ñ ´2.1 “ ´ 21
200

a

ñ a “ 20,

as required.

Well,
3.5 ´ 1

8
p20q “ 1

and the equation of the curve is

y “ 1
2
p20qx´2

` 1 ñ y “
10

x2
` 1.

The diagram also shows lines perpendicular to the x-axis at x “ 2, x “ p, and x “ 5.

Given that the areas of the regions A and B are equal,

(b) (5)find the value of p.

Solution

13
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Well, as the two areas are the same,

ż p

2

p10x´2
` 1q dx “

ż 5

p

p10x´2
` 1q dx

ñ
“

´10x´1
` x

‰p

x“2
“

“

´10x´1
` x

‰5

x“2

ñ

ˆ

´
10

p
` p

˙

´ p´5 ` 2q “ p´2 ` 5q ´

ˆ

´
10

p
` p

˙

ñ 2

ˆ

´
10

p
` p

˙

` 5 ´ 2 “ ´2 ` 5

ñ ´
10

p
` p “ 0

ñ p “
10

p

ñ p2 “ 10

ñ p “ ˘
?
10;

but p ą 0 (why?). Hence,
p “

?
10.

EITHER

12. An examination paper contains 12 different questions of which

• 3 are on trigonometry,

• 4 are on algebra, and

• 5 are on calculus.

Candidates are asked to answer 8 questions.

Calculate

(a) (i) (2)the number of different ways in which a candidate can select 8 questions if there
is no restriction,

Solution
There are

ˆ

12

8

˙

“ 495 different ways.

14
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(ii) (2)the number of these selections which contain questions on only 2 of the 3 topics,
trigonometry, algebra, and calculus.

Solution
He can answer

• 3 are on trigonometry and 4 are on algebra: unfortunately, there are
only 7 questions so that is discounted;

• 3 are on trigonometry and 5 are on calculus: they must answer all of
them which is a total of 1 way;

• 4 are on algebra and 5 are on calculus: they has a spare question
which is a total of 9 ways.

So, to answer 8 questions,

0 ` 1 ` 9 “ 10 different ways.

A fashion magazine runs a competition, in which 8 photographs of dresses are shown,
lettered A, B, C, D, E, F , G, and H.

Competitors are asked to submit an arrangement of 5 letters showing their choice of
dresses in descending order of merit.

The winner is picked at random from those competitors whose arrangement of letters
agrees with that chosen by a panel of experts.

(b) (i) (2)Calculate the number of possible arrangements of 5 letters chosen from the 8.

Solution
We have permutations:

8P5 “ 6 720 different ways.

Calculate the number of these arrangements

(ii) (2)in which A is placed first,

Solution
We have an one-eighth of (b)(i):

1
8

ˆ 6 720 “ 840 different ways.

15
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(iii) (2)which contain A.

Solution
We have an five-eighths of (b)(i):

5
8

ˆ 6 720 “ 4 200 different ways.

OR

13. The table shows experimental values of the variables x and y which are related by the
equation

y “ Abx,

where A and b are constants.

x 2 4 6 8 10

y 9.8 19.4 37.4 74.0 144.4

(a) (2)Use the data above in order to draw, on graph paper, the straight line graph of
log10 y against x.

Solution

Use 3 significant figures to get log10 y:

x 2 4 6 8 10

y 9.8 19.4 37.4 74.0 144.4

log10 y 0.991 1.29 1.57 1.87 2.16

Now, we plot the points and a draw a best of fit:

x

log10 y

O 1 2 3 4 5 6 7 8 9 10

1

2

3

16
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We have a very good fit!

(b) (5)Use your graph to estimate the value of A and of b.

Solution

Suppose
log10 y “ mx ` c,

for some constants m and c. Now,

m “
1.57 ´ 1.29

6 ´ 4

“ 0.14

and

x “ 4, log10 y “ 1.29 ñ 1.29 “ 4 ˆ 0.14 ` c

ñ 1.29 “ 0.56 ` c

ñ c “ 0.73.

Putting it together,

log10 y “ 0.14x ` 0.73 ñ y “ 100.14x`0.73

ñ y “ 100.73p100.14q
x

ñ y “ 5.37 ¨ 1.38x.

(c) (3)On the same diagram, draw the straight line representing y “ 2x and hence find
the value of x for which

Abx “ 2x.

Solution

Well,

y “ 2x ñ log10 y “ log10 2
x

ñ log10 y “ x log10 2

and we plot the line:

17
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x

log10 y

O 1 2 3 4 5 6 7 8 9 10

1

2

3

Hence, x “ 4.5.
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