Dr Oliver Mathematics Cambridge O Level Additional Mathematics 2004 June Paper 1: Calculator 2 hours

The total number of marks available is 80. You must write down all the stages in your working.

1. Given that

$$y = \frac{3x-2}{x^2+5},$$

find

(a) an expression for
$$\frac{dy}{dx}$$
, (2)
Solution
Well,
 $u = 3x - 2 \Rightarrow \frac{du}{dx} = 3$
 $v = x^2 + 5 \Rightarrow \frac{dv}{dx} = 2x$.
Quotient rule:
 $\frac{dy}{dx} = \frac{(x^2 + 5)(3) - (3x - 2)(2x)}{(x^2 + 5)^2}$
 $= \frac{3x^2 + 15 - (6x^2 - 4x)}{(x^2 + 5)^2}$
 $= \frac{3x^2 + 15 - 6x^2 + 4x}{(x^2 + 5)^2}$
 $= \frac{-3x^2 + 4x + 15}{(x^2 + 5)^2}$.
(b) the x-coordinates of the stationary points. (2)

Solution

Now,

$$\frac{dy}{dx} = 0 \Rightarrow \frac{-3x^2 + 4x + 15}{(x^2 + 5)^2} = 0$$

$$\Rightarrow -3x^2 + 4x + 15 = 0$$

$$\Rightarrow 3x^2 - 4x - 15 = 0$$
add to:

$$-4$$
multiply to: $(+3) \times (-15) = -45$

$$-9, +5$$
e.g.,

$$\Rightarrow 3x^2 - 9x + 5x - 15 = 0$$

$$\Rightarrow 3x(x - 3) + 5(x - 3) = 0$$

$$\Rightarrow (3x + 5)(x - 3) = 0$$

$$\Rightarrow 3x + 5 = 0 \text{ or } x - 3 = 0$$

$$\Rightarrow 3x + 5 = 0 \text{ or } x - 3 = 0$$

$$\Rightarrow x = -1\frac{2}{3} \text{ or } x = 3.$$

2. Find the x-coordinates of the three points of intersection of the curve

 $y = x^3$

with the line

y = 5x - 2,

expressing non-integer values in the form

$$a \pm \sqrt{b},$$

where a and b are integers.

Solution		
Now,		
	$x^{3} = 5x - 2 \Rightarrow x^{3} - 5x + 2 = 0$	
and let		
	$f(x) = x^3 - 5x + 2.$	
	Mathematics	
	2	

(5)

Next,

f(1) = 1 - 5 + 2 = -2f(-1) = -1 + 5 + 2 = 6f(2) = 8 - 10 + 2 = 0,

and we know that (x-2) is a root of f(x).

Synthetic division:

01		01	11	111
2	1	0	-5	2
	↓	2	4	-2
	1	2	-1	0

and so

$$x^{3} - 5x + 2 = (x - 2)(x^{2} + 2x - 1).$$

Now, we will complete the square:

$$x^{2} + 2x - 1 = 0 \Rightarrow x^{2} + 2x = 1$$

$$\Rightarrow x^{2} + 2x + 1 = 1 + 1$$

$$\Rightarrow (x + 1)^{2} = 2$$

$$\Rightarrow x + 1 = \pm\sqrt{2}$$

$$\Rightarrow x = -1 \pm \sqrt{2}.$$

Hence, the solutions are

$$x = 2, -1 \pm \sqrt{2}.$$

- 3. (a) Sketch on the same diagram the graphs of

$$y = |2x + 3|$$
 and $y = 1 - x$.

Solution

(b) Find the values of x for which

$$x + |2x + 3| = 1.$$

Solution Well, $x+|2x+3|=1 \Rightarrow |2x+3|=1-x$ and so we look at where the two lines cross. $\underline{2x+3=1-x:}$ $2x + 3 = 1 - x \Rightarrow 3x = -2$ $\Rightarrow x = -\frac{2}{3}.$ -(2x+3) = 1 - x: $-(2x+3) = 1 - x \Rightarrow -2x - 3 = 1 - x$ $\Rightarrow -x = 4$ $\Rightarrow x = -4.$ Hence, the values of x are $\underline{\underline{x = -4}}$ or $\underline{\underline{x = -\frac{2}{3}}}$.

4. The function f is defined, for $0^{\circ} \leq x \leq 360^{\circ}$, by

$$f(x) = a\sin(bx) + c,$$

where a, b, and c are positive integers.

Given that the amplitude of f is 2 and the period of f is 120° ,

(a) state the value of a and of b.

Solution Well, $\underline{a=2}$ and $b = \frac{360}{120} = \underline{3}.$

Given further that the minimum value of f is -1,

(b) state the value of c,

Solution $c = 1$	Dr	Oliver
$\underline{c=1}$.		

(c) sketch the graph of f.

5. The straight line

meets the curve

xy + 24 = 0

5y + 2x = 1

at the points A and B.

Find the length of AB, correct to one decimal place.

(6)

(2)

(1)

Solution Well,

$$xy + 24 = 0 \Rightarrow xy = -24$$
$$\Rightarrow y = -\frac{24}{x}$$

and let us insert in to the linear equation:

$$5y + 2x = 1 \Rightarrow 5\left(-\frac{24}{x}\right) + 2x = 1$$

multiply by x:

$$\Rightarrow -120 + 2x^2 = x$$
$$\Rightarrow 2x^2 - x - 120 = 0$$

add to: -1multiply to: $(+2) \times (-120) = -240$ -16, +15

e.g.,

$$\Rightarrow 2x^2 - 16x + 15x - 120 = 0$$

$$\Rightarrow 2x(x - 8) + 15(x - 8) = 0$$

$$\Rightarrow (2x + 15)(x - 8) = 0$$

$$\Rightarrow 2x + 15 = 0 \text{ or } x - 8 = 0$$

$$\Rightarrow x = -7.5 \text{ or } x = 8$$

$$\Rightarrow y = 3.2 \text{ or } y = -3;$$

so, the two points are (-7.5, 3.2) and (8, -3). Finally,

length =
$$\sqrt{[8 - (-7.5)]^2 + (-3 - 3.2)^2}$$

= $\sqrt{(15.5)^2 + (-6.2)^2}$
= $\sqrt{240.25 + 38.44}$
= $\sqrt{278.69}$
= 16.694 010 9 (FCD)
= 16.7 cm (1 dp).

- 6. The table below shows
 - the daily production, in kilograms, of two types, S_1 and S_2 , of sweets from a small company and
 - the percentages of the ingredients A, B, and C required to produce S_1 and S_2 .

	A	В	C	Daily Production
Type S_1	60	30	10	300
Type S_2	50	40	10	240

Given that the costs, in dollars per kilogram, of A, B, and C are 4, 6, and 8 respectively, use matrix multiplication to calculate the total cost of daily production.

Solution Well,	
	$\left(\begin{array}{ccc} 300 & 240 \end{array}\right) \left(\begin{array}{ccc} 0.6 & 0.3 & 0.1 \\ 0.5 & 0.4 & 0.1 \end{array}\right) \left(\begin{array}{c} 4 \\ 6 \\ 8 \end{array}\right)$
=	$\left(\begin{array}{cc} 300 & 240 \end{array}\right) \left(\begin{array}{c} 5 \\ 5.2 \end{array}\right)$
=	(2748).
Hence, the total cost of	daily production is $\underline{\$2748}$.

7. To a cyclist travelling due south on a straight horizontal road at 7 ms^{-1} , the wind appears to be blowing from the north-east.

(5)

Given that the wind has a constant speed of 12 ms^{-1} , find the direction from which the wind is blowing.

Solution

We will draw a picture:

8. A curve has the equation

$$y = (ax+3)\ln x,$$

where x > 0 and a is a positive constant.

The normal to the curve at the point where the curve crosses the x-axis is parallel to the line

$$5y + x = 2.$$

Find the value of a.

Solution

On the x-axis, y = 0. Which means **EITHER** ax + 3 = 0 **OR** $\ln x = 0$. Now,

$$ax + 3 = 0 \Rightarrow x = -\frac{3}{a}$$

but x > 0. So

$$\ln x = 0 \Rightarrow x = 1$$

(7)

Well,

$$u = ax + 3 \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = a$$
$$v = \ln x \Rightarrow \frac{\mathrm{d}v}{\mathrm{d}x} = \frac{1}{x}.$$

Product rule:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = (ax+3)\left(\frac{1}{x}\right) + (a)(\ln x)$$
$$= \frac{ax+3}{x} + a\ln x.$$

Next,

$$5y + x = 2 \Rightarrow 5y = -x + 2$$
$$\Rightarrow y = -\frac{1}{5}x + \frac{2}{5},$$

which means the the tangent to the curve is $-\frac{1}{5}$. Finally,

$$a = -\frac{1}{-\frac{1}{5}}$$
$$= \underline{2}.$$

9. (a) Calculate the term independent of x in the binomial expansion of

$$\left(x - \frac{1}{2x^5}\right)^{18}.$$

Solution
Well,

$$\left(x - \frac{1}{2x^5}\right)^{18} \Rightarrow \left(x - \frac{1}{2}x^{-5}\right)^{18}$$

and the general binomial coefficient is
 $\left(\binom{18}{r}x^r(-\frac{1}{2}x^{-5})^{18-r}.\right)$

So the term independent of x is

$$r - 5(18 - r) = 0 \Rightarrow r - 90 + 5r = 0$$
$$\Rightarrow 6r = 90$$
$$\Rightarrow r = 15.$$

Hence, the term independent of x is

$$\binom{18}{15}x^{15}(-\frac{1}{2}x^{-5})^3 = \underline{-102}.$$

(b) In the binomial expansion of

$$(1+kx)^n,$$

where $n \ge 3$ and k is a constant, the coefficients of x^2 and x^3 are equal.

Express k in terms of n.

Now,

Solution

$$(1+kx)^n = 1 + knx + \frac{1}{2}n(n-1)(kx)^2 + \frac{1}{6}n(n-1)(n-2)(kx)^3 + \dots$$

Next, if the coefficients of x^2 and x^3 are equal, then

$$\frac{1}{2}n(n-1)k^2 = \frac{1}{6}n(n-1)(n-2)k^3$$

$$\Rightarrow \quad \frac{1}{2}n(n-1)k^2 - \frac{1}{6}n(n-1)(n-2)k^3 = 0$$

$$\Rightarrow \quad \frac{3}{6}n(n-1)k^2 - \frac{1}{6}n(n-1)(n-2)k^3 = 0$$

$$\Rightarrow \quad \frac{1}{6}n(n-1)k^2[3-k(n-2)] = 0.$$

We want to express k in terms of n:

- 10. The diagram shows an isosceles triangle ABC in which
 - BC = AC = 20 cm and
 - angle BAC = 0.7 radians.

(4)

DC is an arc of a circle, centre A.

Find, correct to 1 decimal place,

(a) the area of the shaded region,

Solution

Now, $\angle CBA = 0.7$ radians (isosceles triangle) and $\angle ACB = (\pi - 1.4)$ radians.

Area of $\triangle ABC$:

area =
$$\frac{1}{2} \times 20 \times 20 \times \sin(\pi - 1.4)$$

= 200 sin($\pi - 1.4$).

Area of the shape ACD:

$$area = \frac{1}{2} \times 20 \times 20 \times 0.7$$
$$= 140.$$

Finally,

area of the shaded region = area of
$$\triangle ABC$$
 – area of the shape ACD
= 200 sin(π – 1.4) – 140
= 57.089 946 (FCD)
= 57.1 cm^2 (1 dp).

(b) the perimeter of the shaded region.

Solution
Sine rule:
$$\frac{AB}{\sin ACB} = \frac{BC}{\sin BAC} \Rightarrow \frac{AB}{\sin(\pi - 1.4)} = \frac{20}{\sin 0.7}$$
$$\Rightarrow AB = \frac{20\sin(\pi - 1.4)}{\sin 0.7}.$$

(4)

(4)

11. The diagram shows part of a curve, passing through the points (2, 3.5) and (5, 1.4).

The gradient of the curve at any point (x, y) is

$$-\frac{a}{x^3}$$
,

where a is a positive constant.

(a) how that a = 20 and obtain the equation of the curve.

(5)

Solution Well,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{a}{x^3} \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -ax^{-3}$$
$$\Rightarrow y = -a(-\frac{1}{2}x^{-2}) + c$$
$$\Rightarrow y = \frac{1}{2}ax^{-2} + c,$$

where c is a constant. Now,

$$x = 2, y = 3.5 \Rightarrow 3.5 = \frac{1}{2}a(2^{-2}) + c$$

$$\Rightarrow 3.5 = \frac{1}{8}a + c$$

$$\Rightarrow 3.5 - \frac{1}{8}a = c.$$

Next,

$$x = 5, y = 1.4 \Rightarrow 1.4 = \frac{1}{2}a(5^{-2}) + 3.5 - \frac{1}{8}a$$

$$\Rightarrow -2.1 = \frac{1}{50}a - \frac{1}{8}a$$

$$\Rightarrow -2.1 = -\frac{21}{200}a$$

$$\Rightarrow a = 20,$$

as required.

Well,

$$3.5 - \frac{1}{8}(20) = 1$$

and the equation of the curve is

The diagram also shows lines perpendicular to the x-axis at x = 2, x = p, and x = 5.

Given that the areas of the regions A and B are equal,

(b) find the value of p.

(5)

Solution

Well, as the two areas are the same,

$$\begin{split} & \int_{2}^{p} (10x^{-2} + 1) \, \mathrm{d}x = \int_{p}^{5} (10x^{-2} + 1) \, \mathrm{d}x \\ \Rightarrow \quad \left[-10x^{-1} + x \right]_{x=2}^{p} = \left[-10x^{-1} + x \right]_{x=2}^{5} \\ \Rightarrow \quad \left(-\frac{10}{p} + p \right) - (-5 + 2) = (-2 + 5) - \left(-\frac{10}{p} + p \right) \\ \Rightarrow \quad 2 \left(-\frac{10}{p} + p \right) + 5 - 2 = -2 + 5 \\ \Rightarrow \quad -\frac{10}{p} + p = 0 \\ \Rightarrow \quad p = \frac{10}{p} \\ \Rightarrow \quad p^{2} = 10 \\ \Rightarrow \quad p = \pm \sqrt{10}; \end{split}$$

but $p > 0$ (why?). Hence,
$$\underline{p = \sqrt{10}}.$$

EITHER

- 12. An examination paper contains 12 different questions of which
 - 3 are on trigonometry,
 - 4 are on algebra, and
 - 5 are on calculus.

Candidates are asked to answer 8 questions.

Calculate

 (a) (i) the number of different ways in which a candidate can select 8 questions if there is no restriction,

(ii) the number of these selections which contain questions on only 2 of the 3 topics,
 (2) trigonometry, algebra, and calculus.

Solution

He can answer

- 3 are on trigonometry and 4 are on algebra: unfortunately, there are only 7 questions so that is discounted;
- 3 are on trigonometry and 5 are on calculus: they must answer all of them which is a total of 1 way;
- 4 are on algebra and 5 are on calculus: they has a spare question which is a total of 9 ways.

So, to answer 8 questions,

$$0 + 1 + 9 = 10$$
 different ways.

A fashion magazine runs a competition, in which 8 photographs of dresses are shown, lettered A, B, C, D, E, F, G, and H.

Competitors are asked to submit an arrangement of 5 letters showing their choice of dresses in descending order of merit.

The winner is picked at random from those competitors whose arrangement of letters agrees with that chosen by a panel of experts.

(b) (i) Calculate the number of possible arrangements of 5 letters chosen from the 8.

(2)

Solution We have permutations:

$$_8P_5 = 6720$$
 different ways.

Calculate the number of these arrangements

(ii) in which A is placed first,

Solution
We have an one-eighth of (b)(i):
$$\frac{1}{8} \times 6720 = \underline{840 \text{ different ways}}.$$

(iii) which contain A.

Solution We have an five-eighths of (b)(i):
$\frac{5}{8} \times 6720 = \underline{4200} \text{ different ways.}$
Dr Olwer

OR

13. The table shows experimental values of the variables x and y which are related by the equation

$$y = Ab^x,$$

where A and b are constants.

$x \mid$	2	4	6	8	10
y	9.8	19.4	37.4	74.0	144.4

(a) Use the data above in order to draw, on graph paper, the straight line graph of $\log_{10} y$ against x. (2)

)

We have a very good fit!

(b) Use your graph to estimate the value of A and of b.

(5)

Solution

Suppose

$$\log_{10} y = mx + c,$$

for some constants m and c. Now,

$$m = \frac{1.57 - 1.29}{6 - 4}$$
$$= 0.14$$

and

$$x = 4, \log_{10} y = 1.29 \Rightarrow 1.29 = 4 \times 0.14 + c$$
$$\Rightarrow 1.29 = 0.56 + c$$
$$\Rightarrow c = 0.73.$$

Putting it together,

$$\log_{10} y = 0.14x + 0.73 \Rightarrow y = 10^{0.14x + 0.73}$$
$$\Rightarrow y = 10^{0.73} (10^{0.14})^x$$
$$\Rightarrow \underline{y = 5.37 \cdot 1.38^x}.$$

(c) On the same diagram, draw the straight line representing $y = 2^x$ and hence find the value of x for which

$$Ab^x = 2^x.$$

Solution
Well,
$$y = 2^x \Rightarrow \log_{10} y = \log_{10} 2^x$$
$$\Rightarrow \log_{10} y = x \log_{10} 2$$
and we plot the line:

Dr Oliver Mathematics

Dr Oliver Mathematics

Dr Oliver Mathematics

