Dr Oliver Mathematics
 Further Mathematics
 Poisson Distribution
 Past Examination Questions

This booklet consists of 35 questions across a variety of examination topics. The total number of marks available is 321 .

	Symbol	Expectation	Variance	Continuity Correction?
Poisson	$\operatorname{Po}(\lambda)$	$\lambda=n p$	$\lambda=n p$	No
Normal	$\mathrm{N}\left(\mu, \sigma^{2}\right)$	$\mu=n p$	$\sigma^{2}=n p$	Yes

1. A botanist suggests that the number of a particular variety of weed growing in a meadow can be modelled by a Poisson distribution.
(a) Write down two conditions that must apply for this model to be applicable.

Solution

Weeds grow independently, singly, randomly, and at a constant rate of weeds per m ${ }^{2}$

Assuming this model and a mean of 0.7 weeds per m^{2}, find
(b) the probability that in a randomly chosen plot of size $4 \mathrm{~m}^{2}$ there will be fewer than

3 of these weeds.

Solution

Let X be the number of weeds.
So, in $4 \mathrm{~m}^{2}$, there will be $4 \times 0.7=2.8$ of them $\therefore X \sim \operatorname{Po}(2.8)$.

$$
\begin{aligned}
\mathrm{P}(X<3) & =\mathrm{P}(X \leqslant 2) \\
& =\mathrm{e}^{-2.8}\left[1+2.8+\frac{2.8^{2}}{2!}\right] \\
& =0.469453683(\mathrm{FCD}) \\
& =\underline{\underline{0.4695(4 \mathrm{dp})} .} .
\end{aligned}
$$

(c) Using a suitable approximation, find the probability that in a plot of $100 \mathrm{~m}^{2}$ there will be more than 66 of these weeds.

Solution

So, in $100 \mathrm{~m}^{2}$, there will be $100 \times 0.7=70$ of them $\therefore Y \sim \operatorname{Po}(70)$
$\therefore Y \approx \sim \mathrm{~N}(70,70)$.

$$
\begin{aligned}
\mathrm{P}(Y>66) & =\mathrm{P}\left(Z>\frac{66.5-70}{\sqrt{70}}\right) \\
& =\mathrm{P}(Z>-0.42) \\
& =\mathrm{P}(Z<0.42) \\
& =\underline{\underline{0.6628}} \text { (from the tables). }
\end{aligned}
$$

2. The number of breakdowns per day in a large fleet of hire cars has a Poisson distribution with mean $\frac{1}{7}$.
(a) Find the probability that on a particular day there are fewer than 2 breakdowns.

Solution

Let X equal the number of breakdowns $\therefore X \sim \operatorname{Po}\left(\frac{1}{7}\right)$.

$$
\begin{aligned}
\mathrm{P}(X<2) & =\mathrm{P}(X \leqslant 1) \\
& =\mathrm{e}^{-\frac{1}{7}}\left[1+\frac{1}{7}\right] \\
& =0.9907175997(\mathrm{FCD}) \\
& =\underline{\underline{0.9907(4 \mathrm{dp})} .} .
\end{aligned}
$$

(b) Find the probability that during a 14-day period there are at most 4 breakdowns.

Solution

We have $Y \sim \operatorname{Po}(2)$. Then

$$
\mathrm{P}(Y \leqslant 4)=\underline{\underline{0.9473}} \text { (from the tables). }
$$

3. Minor defects occur in a particular make of carpet at a mean rate of 0.05 per m^{2}.
(a) Suggest a suitable model for the distribution of the number of defects in this make of carpet. Give a reason for your answer.

Solution

The number of defects in a carpet of $a \mathrm{~m}^{2}$ is $X \sim \operatorname{Po}(0.05 a)$.
The defects appear independently, singly, randomly, and at a constant rate of defects per m^{2}

A carpet fitter has a contract to fit this carpet in a small hotel. The hotel foyer requires $30 \mathrm{~m}^{2}$ of this carpet. Find the probability that the foyer carpet contains
(b) exactly 2 defects,

Solution

Let X equal the number of defects $\therefore X \sim \operatorname{Po}(1.5)$. Then

$$
\begin{aligned}
\mathrm{P}(X=2) & =\mathrm{e}^{-1.5} \frac{1.5^{2}}{2!} \\
& =0.2510214302(\mathrm{FCD}) \\
& =\underline{\underline{0.2510(4 \mathrm{dp})}} .
\end{aligned}
$$

(c) more than 5 defects.

Solution

$$
\begin{aligned}
\mathrm{P}(X>5) & =1-\mathrm{P}(X \leqslant 5) \\
& =1-0.9955 \text { (from the tables) } \\
& =\underline{\underline{0.0045}} .
\end{aligned}
$$

The carpet fitter orders a total of $355 \mathrm{~m}^{2}$ of the carpet for the whole hotel.
(d) Using a suitable approximation, find the probability that this total area of carpet contains 22 or more defects.

Solution

Let Y equal the number of defects $\therefore Y \sim \operatorname{Po}(17.75)$

$$
\begin{aligned}
& \therefore Y \approx \sim \mathrm{~N}(17.75,17.75) . \\
& \qquad \begin{aligned}
\mathrm{P}(Y \geqslant 22) & =\mathrm{P}\left(Z \geqslant \frac{21.5-17.75}{\sqrt{17.75}}\right) \\
& =\mathrm{P}(Z \geqslant 0.89) \\
& =1-\mathrm{P}(Z \leqslant 0.89) \\
& =1-0.8133 \text { (from the tables) } \\
& =\underline{\underline{0.1867}} .
\end{aligned}
\end{aligned}
$$

4. The random variables S are distributed as $S \sim \mathrm{Po}(7.5)$.

Find $\mathrm{P}(S=5)$.

Solution

$$
\begin{aligned}
\mathrm{P}(S=5) & =\mathrm{P}(S \leqslant 5)-\mathrm{P}(S \leqslant) \\
& =0.2414-0.1321 \text { (from the tables) } \\
& =\underline{\underline{0.1093}} .
\end{aligned}
$$

5. Over a long period of time, accidents happened on a stretch of road at random at a rate of 3 per month.

Find the probability that
(a) in a randomly chosen month, more than 4 accidents occurred,

Solution

Let X equal the number of accidents in a one-month period..$X \sim \operatorname{Po}(3)$.
Then

$$
\begin{aligned}
\mathrm{P}(X>4) & =1-\mathrm{P}(X \leqslant 4) \\
& =1-0.8153 \text { (from the tables) } \\
& =\underline{\underline{0.1847}} .
\end{aligned}
$$

(b) in a three-month period, more than 4 accidents occurred.

Solution

Let Y equal the number of accidents in a three-month period $\therefore Y \sim \operatorname{Po}(9)$. Then

$$
\begin{aligned}
\mathrm{P}(Y>4) & =1-\mathrm{P}(Y \leqslant 4) \\
& =1-0.0550 \text { (from the tables) } \\
& =\underline{\underline{0.9450}} .
\end{aligned}
$$

6. The random variable X is the number of misprints per page in the first draft of a novel.
(a) State two conditions under which a Poisson distribution is a suitable model for X.

Solution

Misprints are independent, single, random, and at a constant rate

The number of misprints per page has a Poisson distribution with mean 2.5. Find the probability that
(b) a randomly chosen page has no misprints,

Solution

$X \sim \operatorname{Po}(2.5):$

$$
\mathrm{P}(X=0)=\underline{\underline{0.0821}} \text { (from the tables). }
$$

(c) the total number of misprints on 2 randomly chosen pages is more than 7 .

Solution

$Y \sim \operatorname{Po}(5):$

$$
\begin{aligned}
\mathrm{P}(X>7) & =1-\mathrm{P}(X \leqslant 7) \\
& =1-0.8666 \text { (from the tables) } \\
& =\underline{\underline{0.1334}} .
\end{aligned}
$$

The first chapter contains 20 pages.
(d) Using a suitable approximation find, to 2 decimal places, the probability that the chapter will contain less than 40 misprints.

Solution

$A \sim \operatorname{Po}(50)$ and so $A \approx \sim \mathrm{~N}(50,50)$:

$$
\begin{aligned}
\mathrm{P}(A<40) & =\mathrm{P}\left(Z \leqslant \frac{39.5-50}{\sqrt{50}}\right) \\
& =\mathrm{P}(Z<-1.48) \\
& =\mathrm{P}(Z>1.48) \\
& =1-\Phi(1.48) \\
& =1-0.9306 \text { (from the tables) } \\
& =0.0694 \\
& =\underline{\underline{0.07(2 \mathrm{dp})} .}
\end{aligned}
$$

7. Accidents on a particular stretch of motorway occur at an average rate of 1.5 per week.
(a) Write down a suitable model to represent the number of accidents per week on this stretch of motorway.

Solution

Let X equal the number of accidents $\therefore X \sim \operatorname{Po}(1.5)$.

Find the probability that
(b) there will be 2 accidents in the same week,

Solution

$$
\begin{aligned}
\mathrm{P}(X=2) & =\mathrm{P}(X \leqslant 2)-\mathrm{P}(X \leqslant 1) \\
& =0.8088-0.5578 \text { (from the tables) } \\
& =\underline{\underline{0.2510}} .
\end{aligned}
$$

(c) there is at least one accident per week for 3 consecutive weeks,

Solution

$$
\begin{aligned}
\mathrm{P}(X \geqslant 1) & =1-\mathrm{P}(X=0) \\
& =1-0.2231 \text { (from the tables) } \\
& =0.7769
\end{aligned}
$$

and

$$
\begin{aligned}
\mathrm{P}(\text { at least one accident per week for } 3 \text { weeks }) & =(0.7769)^{3} \\
& =0.4689163378(\mathrm{FCD}) \\
& =\underline{\underline{0.4689(4 \mathrm{dp})}} .
\end{aligned}
$$

(d) there are more than 4 accidents in a two-week period.

Solution

$Y \sim \operatorname{Po}(3):$

$$
\begin{aligned}
\mathrm{P}(Y>4) & =1-\mathrm{P}(Y \leqslant 4) \\
& =1-0.8153 \text { (from the tables) } \\
& =\underline{\underline{0.1847}} .
\end{aligned}
$$

8. An estate agent sells properties at a mean rate of 7 per week.
(a) Suggest a suitable model to represent the number of properties sold in a randomly chosen week. Give two reasons to support your model.

Solution

$X \sim \operatorname{Po}(7)$.
They are sold independently, singly, randomly, and at a constant rate
(b) Find the probability that in any randomly chosen week the estate agent sells exactly

5 properties.

Solution

$$
\begin{aligned}
\mathrm{P}(X=5) & =\mathrm{P}(X \leqslant 5)-\mathrm{P}(X \leqslant 4) \\
& =0.3007-0.1730 \text { (from the tables) } \\
& =\underline{\underline{0.1277}} .
\end{aligned}
$$

(c) Using a suitable approximation find the probability that during a 24 week period the estate agent sells more than 181 properties.

Solution

Let Y equal the number of sales $\therefore Y \sim \operatorname{Po}(168)$
$\therefore Y \approx \sim \mathrm{~N}(168,168)$.

$$
\begin{aligned}
\mathrm{P}(Y>181) & =\mathrm{P}\left(Z>\frac{181.5-168}{\sqrt{168}}\right) \\
& =\mathrm{P}(Z>1.04) \\
& =1-\mathrm{P}(Z<1.04) \\
& =1-0.8508 \text { (from the tables) } \\
& =\underline{\underline{0.1492}}
\end{aligned}
$$

9. Breakdowns occur on a particular machine at random at a mean rate of 1.25 per week.

Find the probability that fewer than 3 breakdowns occurred in a randomly chosen week.

Solution

Let X equal the number of breakdowns $\therefore X \sim \operatorname{Po}(1.25)$.

$$
\begin{aligned}
\mathrm{P}(X<3) & =\mathrm{P}(X \leqslant 2) \\
& =\mathrm{e}^{-1.25}\left[1+1.25+\frac{1.25^{2}}{2!}\right] \\
& =0.8684676655(\mathrm{FCD}) \\
& =\underline{\underline{0.8685(4 \mathrm{dp})} .}
\end{aligned}
$$

10. The random variable J has a Poisson distribution with mean 4.

Find $\mathrm{P}(J \geqslant 10)$.

Solution

$$
\begin{aligned}
\mathrm{P}(J \geqslant 10) & =1-\mathrm{P}(J \leqslant 9) \\
& =1-0.9919 \text { (from the tables) } \\
& =\underline{\underline{0.0081}} .
\end{aligned}
$$

11. (a) State the condition under which the normal distribution may be used as an approximation to the Poisson distribution.

Solution

$\underline{\underline{\lambda}>10}$
(b) Explain why a continuity correction must be incorporated when using the normal distribution as an approximation to the Poisson distribution.

Solution

The Poisson distribution is discrete and the normal distribution is continuous

A company has yachts that can only be hired for a week at a time. All hiring starts on a Saturday. During the winter the mean number of yachts hired per week is 5 .
(c) Calculate the probability that fewer than 3 yachts are hired on a particular Saturday in winter.

Solution

Let X equal the number of yachts $\therefore X \sim \operatorname{Po}(5)$.

$$
\begin{aligned}
\mathrm{P}(X<3) & =\mathrm{P}(X \leqslant 2) \\
& =\underline{\underline{0.1247}} \text { (from the tables). }
\end{aligned}
$$

During the summer the mean number of yachts hired per week increases to 25 . The company has only 30 yachts for hire.
(d) Using a suitable approximation find the probability that the demand for yachts cannot be met on a particular Saturday in the summer.

Solution

Let Y equal the number of yachts $\therefore Y \sim \operatorname{Po}(25) \therefore Y \approx \sim \mathrm{~N}(25,25)$. Now,

$$
\begin{aligned}
\mathrm{P}(Y>31) & =\mathrm{P}\left(Z>\frac{30.5-25}{\sqrt{25}}\right) \\
& =\mathrm{P}(Z>1.1) \\
& =1-\mathrm{P}(Z<1.1) \\
& =1-0.8643 \text { (from the tables) } \\
& =\underline{\underline{0.1357}} .
\end{aligned}
$$

In the summer there are 16 Saturdays on which a yacht can be hired.
(e) Estimate the number of Saturdays in the summer that the company will not be able to meet the demand for yachts.

Solution

$$
\begin{aligned}
\mathrm{P}(\text { cannot demand for yachts }) & =16 \times 0.1357 \\
& =2.1712 \\
& =\underline{\underline{\text { or } 3} 3} .
\end{aligned}
$$

12. An engineering company manufactures an electronic component. At the end of the manufacturing process, each component is checked to see if it is faulty. Faulty components are detected at a rate of 1.5 per hour.
(a) Suggest a suitable model for the number of faulty components detected per hour.

Solution

Let X equal the number of faulty components $\therefore \underline{\underline{X \sim \operatorname{Po}(1.5)}}$.
(b) Describe, in the context of this question, two assumptions you have made in part (a) for this model to be suitable.

Solution

They are independent, single, random, and at a constant rate.
(c) Find the probability of 2 faulty components being detected in a 1 hour period.

Solution

$$
\begin{aligned}
\mathrm{P}(X=2) & =\mathrm{P}(X \leqslant 2)-\mathrm{P}(X \leqslant 1) \\
& =0.8088-0.5578 \text { (from the tables) } \\
& =\underline{\underline{0.2510}} .
\end{aligned}
$$

(d) Find the probability of at least one faulty component being detected in a 3 hour period.

Solution

$$
\begin{aligned}
& Y \sim \operatorname{Po}(4.5): \\
& \qquad \begin{aligned}
\mathrm{P}(Y \geqslant 1) & =1-\mathrm{P}(Y=0) \\
& =1-0.0111 \text { (from the tables) } \\
& =\underline{\underline{0.9889}} .
\end{aligned}
\end{aligned}
$$

13. (a) State two conditions under which a Poisson distribution is a suitable model to use in statistical work.

Solution

The items occur independently, singly, randomly, and at a constant rate.

The number of cars passing an observation point in a 10 minute interval is modelled by a Poisson distribution with mean 1.
(b) Find the probability that in a randomly chosen 60 minute period there will be
(i) exactly 4 cars passing the observation point,

Solution
Let X equal the number of passing the observation point $\therefore X \sim \operatorname{Po}(6)$.

$$
\begin{aligned}
\mathrm{P}(X=4) & =\mathrm{P}(X \leqslant 4)-\mathrm{P}(X \leqslant 3) \\
& =0.2851-0.1512 \text { (from the tables) } \\
& =\underline{\underline{0.1339}} .
\end{aligned}
$$

(ii) at least 5 cars passing the observation point.

Solution

$$
\begin{aligned}
\mathrm{P}(X \geqslant 5) & =1-\mathrm{P}(X \leqslant 4) \\
& =1-0.2851 \text { (from the tables) } \\
& =\underline{\underline{0.7149}} .
\end{aligned}
$$

The number of other vehicles, other than cars, passing the observation point in a 60 minute interval is modelled by a Poisson distribution with mean 12.
(c) Find the probability that exactly 1 vehicle, of any type, passes the observation point in a 10 minute period.

Solution

Let Y equal the number of other vehicles passing the observation point in 10 min utes $\therefore Y \sim \mathrm{Po}(2)$:

$$
\begin{aligned}
\mathrm{P}(\text { exactly } 1) & =\mathrm{P}(1 \text { car and } 0 \text { vehicle })+\mathrm{P}(0 \text { cars and } 1 \text { vehicle }) \\
& =1 \mathrm{e}^{-1} \times \mathrm{e}^{-2}+\mathrm{e}^{-1} \times 2 \mathrm{e}^{-2} \\
& =3 \mathrm{e}^{-3} \\
& =0.1493612051(\mathrm{FCD}) \\
& =\underline{\underline{0.1494(4 \mathrm{dp})}} .
\end{aligned}
$$

14. A call centre agent handles telephone calls at a rate of 18 per hour.
(a) Give two reasons to support the use of a Poisson distribution as a suitable model
for the number of calls per hour handled by the agent.

Solution

They are independent, single, random, and at a constant rate.
(b) Find the probability that in any randomly selected 15 minute interval the agent handles
(i) exactly 5 calls,

Solution

Let X equal the number of telephone calls $\therefore X \sim \operatorname{Po}(4.5)$.

$$
\begin{aligned}
\mathrm{P}(X=5) & =\mathrm{P}(X \leqslant 5)-\mathrm{P}(X \leqslant 4) \\
& =0.7029-0.5321 \text { (from the tables) } \\
& =\underline{\underline{0.1703}} .
\end{aligned}
$$

(ii) more than 8 calls.

Solution

$$
\begin{aligned}
\mathrm{P}(X>8) & =1-\mathrm{P}(X \leqslant 8) \\
& =1-0.9597 \text { (from the tables) } \\
& =\underline{\underline{0.0403}} .
\end{aligned}
$$

15. A botanist is studying the distribution of daisies in a field. The field is divided into a number of equal sized squares. The mean number of daisies per square is assumed to be 3. The daisies are distributed randomly throughout the field.

Find the probability that, in a randomly chosen square there will be
(a) more than 2 daisies,

Solution

Let X equal the number of daises $\therefore X \sim \operatorname{Po}(3)$. Then

$$
\begin{aligned}
\mathrm{P}(X>2) & =1-\mathrm{P}(X \leqslant 2) \\
& =1-0.4232 \text { (from the tables) } \\
& =\underline{\underline{0.5768}} .
\end{aligned}
$$

(b) either 5 or 6 daisies.

Solution

$$
\begin{aligned}
\mathrm{P}(\text { either } 5 \text { or } 6 \text { daisies }) & =\mathrm{P}(X \leqslant 6)-\mathrm{P}(X \leqslant 4) \\
& =0.9665-0.8153 \text { (from the tables) } \\
& =\underline{\underline{0.1512}} .
\end{aligned}
$$

The botanist decides to count the number of daisies, x, in each of 80 randomly selected squares within the field. The results are summarised below:

$$
\Sigma x=295 \text { and } \Sigma x^{2}=1386 .
$$

(c) Calculate the mean and the variance of the number of daisies per square for the 80 squares. Give your answers to 2 decimal places.

Solution

$$
\text { Mean }=\frac{295}{80}=3.6875=\underline{\underline{3.69(2 \mathrm{dp})}}
$$

and

$$
\begin{aligned}
\text { variance } & =\frac{1386}{80}-3.6875^{2} \\
& =3.72734375 \\
& =\underline{\underline{3.73(2 \mathrm{dp})}} .
\end{aligned}
$$

(d) Explain how the answers from part (c) support the choice of a Poisson distribution as a model.

Solution

The mean and the variance agree to 2 decimal places.
(e) Using your mean from part (c), estimate the probability that exactly 4 daisies will be found in a randomly selected square.

Solution

$$
\begin{aligned}
\mathrm{P}(X=4) & =\mathrm{e}^{-3.6875} \frac{3.6875^{4}}{4!} \\
& =0.1928661327(\mathrm{FCD}) \\
& =\underline{\underline{0.1929}(4 \mathrm{dp})} .
\end{aligned}
$$

16. An administrator makes errors in her typing randomly at a rate of 3 errors every 1000 words.
(a) In a document of 2000 words find the probability that the administrator makes 4 or more errors.

Solution

Let X equal the number of errors $\therefore X \sim \operatorname{Po}(6)$. Then

$$
\begin{aligned}
\mathrm{P}(X \geqslant 4) & =1-\mathrm{P}(X \leqslant 3) \\
& =1-0.1512 \text { (from the tables) } \\
& =\underline{\underline{0.8488}} .
\end{aligned}
$$

The administrator is given an 8000 word report to type and she is told that the report will only be accepted if there are 20 or fewer errors.
(b) Use a suitable approximation to calculate the probability that the report is accepted.

Solution

Let Y equal the number of errors $\therefore Y \sim \operatorname{Po}(24) \therefore Y \approx \sim \mathrm{~N}(24,24)$. Then

$$
\begin{aligned}
\mathrm{P}(Y \leqslant 20) & =\mathrm{P}\left(Z \leqslant \frac{20.5-24}{\sqrt{24}}\right) \\
& =\mathrm{P}(Z \leqslant-0.71) \\
& =\mathrm{P}(Z \geqslant 0.71) \\
& =1-\Phi(0.71) \\
& =1-0.7611 \text { (from the tables) } \\
& =\underline{\underline{0.2389}} .
\end{aligned}
$$

17. A cloth manufacturer knows that faults occur randomly in the production process at a rate of 2 every 15 metres.
(a) Find the probability of exactly 4 faults in a 15 metre length of cloth.

Solution

Let X equal the number of faults $\therefore X \sim \operatorname{Po}(2)$. Then

$$
\begin{aligned}
\mathrm{P}(X=4) & =\mathrm{P}(X \leqslant 4)-\mathrm{P}(X \leqslant 3) \\
& =0.9473-0.8571 \text { (from the tables) } \\
& =\underline{\underline{0.0902}} .
\end{aligned}
$$

(b) Find the probability of more than 10 faults in 60 metres of cloth.

Solution

Let Y equal the number of faults $\therefore Y \sim \operatorname{Po}(8)$. Then

$$
\begin{aligned}
\mathrm{P}(Y>10) & =1-\mathrm{P}(Y \leqslant 10) \\
& =1-0.8159 \text { (from the tables) } \\
& =\underline{\underline{0.1841}} .
\end{aligned}
$$

A retailer buys a large amount of this cloth and sells it in pieces of length x metres. He chooses x so that the probability of no faults in a piece is 0.80 .
(c) Write down an equation for x and show that $x=1.7$ to 2 significant figures.

Solution

Let A equal the number of faults in a piece of cloth $\therefore A \sim \operatorname{Po}\left(\frac{2}{15} x\right)$. Then

$$
\begin{aligned}
\mathrm{e}^{-\frac{2}{15} x}=0.80 & \Rightarrow-\frac{2}{15} x=\ln 0.80 \\
& \Rightarrow x=-\frac{15}{2} \ln 0.80 \\
& \Rightarrow x=1.673576635(\mathrm{FCD}) \\
& \Rightarrow x=1.7(2 \mathrm{sf}) .
\end{aligned}
$$

The retailer sells 1200 of these pieces of cloth. He makes a profit of 60 p on each piece of cloth that does not contain a fault but a loss of $£ 1.50$ on any pieces that do contain faults.
(d) Find the retailer's expected profit.

Solution

$$
\begin{aligned}
\text { Expected profit } & =1200 \times 0.8 \times 0.6-1200 \times 0.2 \times 1.5 \\
& =576-360 \\
& =\underline{\underline{£ 216}} .
\end{aligned}
$$

18. A robot is programmed to build cars on a production line. The robot breaks down at random at a rate of once every 20 hours.
(a) Find the probability that it will work continuously for 5 hours without a breakdown.

Solution

Let X equal the number of breakdown $\therefore X \sim \operatorname{Po}(0.25)$. Then

$$
\begin{aligned}
\mathrm{P}(X=0) & =\mathrm{e}^{-0.25} \\
& =0.7788007831(\mathrm{FCD}) \\
& =\underline{\underline{0.7788(4 \mathrm{dp})}} .
\end{aligned}
$$

Find the probability that, in an 8 hour period,
(b) the robot will break down at least once,

Solution

$Y \sim \operatorname{Po}(0.4)$. Then

$$
\begin{aligned}
\mathrm{P}(Y \geqslant 1) & =1-\mathrm{P}(Y=0) \\
& =1-\mathrm{e}^{-0.4} \\
& =0.3296799541(\mathrm{FCD}) \\
& =\underline{\underline{0.3297(4 \mathrm{dp})} .}
\end{aligned}
$$

(c) there are exactly 2 breakdowns.

Solution

$$
\begin{aligned}
\mathrm{P}(Y=2) & =\mathrm{e}^{-0.4} \frac{0.4^{2}}{2!} \\
& =0.05362560368(\mathrm{FCD}) \\
& =\underline{\underline{0.0536(4 \mathrm{dp})} .} .
\end{aligned}
$$

In a particular 8 hour period, the robot broke down twice.
(d) Write down the probability that the robot will break down in the following 8 hour period. Give a reason for your answer.

Solution

The events are independent and so 0.3297 (4 dp).
19. A cafe serves breakfast every morning. Customers arrive for breakfast at random at a rate of 1 every 6 minutes.

Find the probability that
(a) fewer than 9 customers arrive for breakfast on a Monday morning between 10 am and 11 am .

Solution

Let X equal the number of breakfast $\therefore X \sim \operatorname{Po}(10)$.

$$
\begin{aligned}
\mathrm{P}(X<9) & =\mathrm{P}(X \leqslant 8) \\
& =\underline{\underline{0.3328} \text { (from the tables) }} .
\end{aligned}
$$

The cafe serves breakfast every day between 8 am and 12 noon.
(b) Using a suitable approximation, estimate the probability that more than 50 customers arrive for breakfast next Tuesday.

Solution

$\therefore Y \sim \mathrm{Po}(40) \therefore Y \approx \sim \mathrm{~N}(40,40):$

$$
\begin{aligned}
\mathrm{P}(Y>50) & =\mathrm{P}\left(Z>\frac{50.5-40}{\sqrt{40}}\right) \\
& =\mathrm{P}(Z>1.66) \\
& =1-\mathrm{P}(Z<1.66) \\
& =1-0.9515 \text { (from the tables) } \\
& =\underline{\underline{0.0485}} .
\end{aligned}
$$

20. A company has a large number of regular users logging onto its website. On average 4 users every hour fail to connect to the company's website at their first attempt.
(a) Explain why the Poisson distribution may be a suitable model in this case.

Solution

It is a suitable model as it explains: independently, singly, randomly, and $\underline{\underline{\text { at a }}}$ constant rate.

Find the probability that, in a randomly chosen 2 hour period,
(b) (i) all users connect at their first attempt,

Solution

Let X equal the number of those who fail $\therefore X \sim \operatorname{Po}(8)$.

$$
\mathrm{P}(X=0)=\underline{\underline{0.0003} \text { (from the tables). }}
$$

(ii) at least 4 users fail to connect at their first attempt.

Solution

$$
\begin{aligned}
\mathrm{P}(X \geqslant 4) & =1-\mathrm{P}(X \leqslant 3) \\
& =1-0.0424 \text { (from the tables) } \\
& =\underline{\underline{0.9576}} .
\end{aligned}
$$

21. Cars arrive at a motorway toll booth at an average rate of 150 per hour.
(a) Suggest a suitable distribution to model the number of cars arriving at the toll booth, X, per minute.

Solution

Let X equal the number of cars which arrive $\therefore X \sim \operatorname{Po}(2.5)$.
(b) State clearly any assumptions you have made by suggesting this model.

Solution

It is a suitable model as it explains: independently, singly, randomly, and at a constant rate.

Using your model,
(c) find the probability that in any given minute
(i) no cars arrive,

Solution

$$
\begin{aligned}
\mathrm{P}(X=0) & =\mathrm{e}^{-2.5} \\
& =0.08208499862(\mathrm{FCD}) \\
& =\underline{\underline{0.0820(4 \mathrm{dp})} .}
\end{aligned}
$$

(ii) more than 3 cars arrive.

Solution

$\mathrm{P}(X>3)$	$=1-\mathrm{P}(X \leqslant 3)$
	$=1-0.7576$ (from the tables)
	$=\underline{\underline{0.2424}}$.

(d) In any given 4 minute period, find m such that $\mathrm{P}(X>m)=0.0487$.

Solution

$X \sim \operatorname{Po}(10)$:

$$
\begin{aligned}
\mathrm{P}(X>m)=0.0487 & \Rightarrow \mathrm{P}(X \leqslant m)=0.9513 \\
& \Rightarrow \underline{m=15} .
\end{aligned}
$$

(e) Using a suitable approximation find the probability that fewer than 15 cars arrive in any given 10 minute period.

Solution

$Y \sim \mathrm{Po}(25) \therefore Y \approx \sim \mathrm{~N}(25,25):$

$$
\begin{aligned}
\mathrm{P}(Y<15) & =\mathrm{P}\left(Z<\frac{14.5-25}{\sqrt{25}}\right) \\
& =\mathrm{P}(Z<-2.10) \\
& =\mathrm{P}(Z>2.10) \\
& =1-\mathrm{P}(Z<2.10) \\
& =1-0.9821 \text { (from the tables) } \\
& =\underline{\underline{0.0179}} .
\end{aligned}
$$

22. Defects occur at random in planks of wood with a constant rate of 0.5 per 10 cm length. Jim buys a plank of length 100 cm .
(a) Find the probability that Jim?s plank contains at most 3 defects.

Solution

Let X equal the number of defects $\therefore X \sim \operatorname{Po}(5)$:

$$
\mathrm{P}(X \leqslant 3)=0.2650 \text { (from the tables). }
$$

Shivani buys 6 planks each of length 100 cm .
(b) Find the probability that fewer than 2 of Shivani's planks contain at most 3 defects.

Solution

$$
\begin{aligned}
\mathrm{P}(\text { fewer than } 2) & =\mathrm{P}(X=0)+\mathrm{P}(X=1) \\
& =(0.7350)^{6}+\binom{6}{1}(0.2650)(0.7350)^{5} \\
& =0.4987232931(\mathrm{FCD}) \\
& =\underline{\underline{0.4987(4 \mathrm{dp})} .}
\end{aligned}
$$

(c) Using a suitable approximation, estimate the probability that the total number of defects on Shivani?s 6 planks is less than 18.

Solution

$Y \sim \mathrm{Po}(30) \therefore Y \approx \sim \mathrm{~N}(30,30):$

$$
\begin{aligned}
\mathrm{P}(Y<18) & =\mathrm{P}\left(Z<\frac{17.5-30}{\sqrt{30}}\right) \\
& =\mathrm{P}(Z<-2.28) \\
& =\mathrm{P}(Z>2.28) \\
& =1-\mathrm{P}(Z<2.28) \\
& =1-0.9887 \text { (from the tables) } \\
& =\underline{\underline{0.0113}} .
\end{aligned}
$$

23. The probability of a telesales representative making a sale on a customer call is 0.15 .

Find the probability that
(a) no sales are made in 10 calls,

Solution

Let X equal the number of sales $\therefore X \sim \operatorname{Po}(1.5)$:

$$
\begin{aligned}
\mathrm{P}(X=0) & =(0.85)^{10} \\
& =0.1968744043(\mathrm{FCD}) \\
& =\underline{\underline{0.1969(4 \mathrm{dp})} .}
\end{aligned}
$$

(b) more than 3 sales are made in 20 calls.

Solution

$X \sim \operatorname{Po}(3):$

$$
\begin{aligned}
\mathrm{P}(X>3) & =1-\mathrm{P}(X \leqslant 3) \\
& =1-0.6472 \text { (from the tables) } \\
& =\underline{\underline{0.3528}} .
\end{aligned}
$$

Representatives are required to achieve a mean of at least 5 sales each day.
(c) Find the least number of calls each day a representative should make to achieve this requirement.

Solution

$$
0.15 n=5 \Rightarrow n=33 \frac{1}{3}
$$

so $\underline{\underline{n=33} \text { or } 34}$.
(d) Calculate the least number of calls that need to be made by a representative for the probability of at least 1 sale to exceed 0.95.

Solution

$$
\begin{aligned}
1-\mathrm{P}(X=0)>0.95 & \Rightarrow \mathrm{P}(X=0)<0.05 \\
& \Rightarrow(0.85)^{n}<0.05 \\
& \Rightarrow n \log 0.85>\ln 0.05 \\
& \Rightarrow n>\frac{\ln 0.05}{\log 0.85} \\
& \Rightarrow n>18.443 \ldots
\end{aligned}
$$

so, $\underline{\underline{n=19}}$.
24. A website receives hits at a rate of 300 per hour.
(a) State a distribution that is suitable to model the number of hits obtained during a 1 minute interval.

Solution

Let X equal the number of hits $\therefore X \sim \operatorname{Po}(5)$.
(b) State two reasons for your answer to part (a).

Solution

It is a suitable model as it explains: independently, singly, randomly, and at a constant rate.

Find the probability of
(c) 10 hits in a given minute,

Solution

$$
\begin{aligned}
\mathrm{P}(X=10) & =\mathrm{P}(X \leqslant 10)-\mathrm{P}(X \leqslant 9) \\
& =0.9863-0.9682 \text { (from the tables) } \\
& =\underline{\underline{0.0181}} .
\end{aligned}
$$

(d) at least 15 hits in 2 minutes.

Solution

```
X ~ Po(10):
```

$$
\begin{aligned}
\mathrm{P}(X \geqslant 15) & =1-\mathrm{P}(X \leqslant 14) \\
& =1-0.9165 \text { (from the tables) } \\
& =\underline{\underline{0.0835}} .
\end{aligned}
$$

The website will go down if there are more than 70 hits in 10 minutes.
(e) Using a suitable approximation, find the probability that the website will go down in a particular 10 minute interval.

Solution

$Y \sim \operatorname{Po}(50) \therefore Y \approx \sim \mathrm{~N}(50,50):$

$$
\begin{aligned}
\mathrm{P}(Y>70) & =\mathrm{P}\left(Z>\frac{70.5-50}{\sqrt{50}}\right) \\
& =\mathrm{P}(Z>2.90) \\
& =1-\mathrm{P}(Z<2.90) \\
& =1-0.9981 \text { (from the tables) } \\
& =\underline{\underline{0.0019}} .
\end{aligned}
$$

25. The number of houses sold by an estate agent follows a Poisson distribution, with a mean of 2 per week.
(a) Find the probability that in the next 4 weeks the estate agent sells
(i) exactly 3 houses,

Solution
$X \sim \operatorname{Po}(8)$:

$$
\begin{aligned}
\mathrm{P}(X=3) & =\mathrm{P}(X \leqslant 3)-\mathrm{P}(X \leqslant 2) \\
& =0.0424-0.0138 \text { (from the tables) } \\
& =\underline{\underline{0.0286}} .
\end{aligned}
$$

(ii) more than 5 houses.

Solution

$$
\begin{aligned}
\mathrm{P}(X>5) & =1-\mathrm{P}(X \leqslant 5) \\
& =1-0.1912 \text { (from the tables) } \\
& =\underline{\underline{0.8088}} .
\end{aligned}
$$

The estate agent monitors sales in periods of 4 weeks.
(b) Find the probability that in the next twelve of the 4 week periods there are exactly nine periods in which more than 5 houses are sold.

Solution

$$
\begin{aligned}
\mathrm{P}(\text { exactly nine periods }) & =\binom{12}{9}(0.8088)^{9}(0.1912)^{3} \\
& =0.2277490782(\mathrm{FCD}) \\
& =\underline{\underline{0.2277(4 \mathrm{dp})}} .
\end{aligned}
$$

The estate agent will receive a bonus if he sells more than 25 houses in the next 10 weeks.
(c) Use a suitable approximation to estimate the probability that the estate agent receives a bonus.

Solution

$Y \sim \mathrm{Po}(20) \therefore Y \approx \sim \mathrm{~N}(20,20):$

$$
\begin{aligned}
\mathrm{P}(Y>25) & =\mathrm{P}\left(Z>\frac{25.5-20}{\sqrt{20}}\right) \\
& =\mathrm{P}(Z>1.23) \\
& =1-\mathrm{P}(Z<1.23) \\
& =1-0.8907 \text { (from the tables) } \\
& =\underline{\underline{0.1093}} .
\end{aligned}
$$

26. In a village, power cuts occur randomly at a rate of 3 per year.
(a) Find the probability that in any given year there will be
(i) exactly 7 power cuts,

Solution

Let X equal the number of power cuts $\therefore X \sim \mathrm{Po}(3)$. Then

$$
\begin{aligned}
\mathrm{P}(X=7) & =\mathrm{P}(X \leqslant 7)-\mathrm{P}(X \leqslant 6) \\
& =0.9881-0.9665 \text { (from the tables) } \\
& =\underline{\underline{0.0216}} .
\end{aligned}
$$

(ii) at least 4 power cuts.

Solution

$$
\begin{aligned}
\mathrm{P}(X \geqslant 4) & =1-\mathrm{P}(X \leqslant 3) \\
& =1-0.6472 \text { (from the tables) } \\
& =\underline{\underline{0.3528}} .
\end{aligned}
$$

(b) Use a suitable approximation to find the probability that in the next 10 years the number of power cuts will be less than 20 .

Solution

$Y \sim \operatorname{Po}(30) \therefore Y \approx \sim \mathrm{~N}(30,30):$

$$
\begin{aligned}
\mathrm{P}(Y<20) & =\mathrm{P}\left(Z>\frac{19.5-30}{\sqrt{30}}\right) \\
& =\mathrm{P}(Z<-1.92) \\
& =\mathrm{P}(Z>1.92) \\
& =1-\mathrm{P}(Z<1.92) \\
& =1-0.9726 \text { (from the tables) } \\
& =\underline{\underline{0.0274}} .
\end{aligned}
$$

27. The number of defects per metre in a roll of cloth has a Poisson distribution with mean 0.25 .

Find the probability that
(a) a randomly chosen metre of cloth has 1 defect,

Solution

Let X equal the number of defects $\therefore X \sim \operatorname{Po}(0.25)$. Then

$$
\begin{aligned}
\mathrm{P}(X=1) & =0.25 \mathrm{e}^{-0.25} \\
& =0.1947001958(\mathrm{FCD}) \\
& =\underline{\underline{0.1947(4 \mathrm{dp})}} .
\end{aligned}
$$

(b) the total number of defects in a randomly chosen 6 metre length of cloth is more than 2.

Solution

$X \sim \operatorname{Po}(1.5):$

$$
\begin{aligned}
\mathrm{P}(X>2) & =1-\mathrm{P}(X \leqslant 2) \\
& =1-0.8088 \text { (from the tables) } \\
& =\underline{\underline{0.1912}} .
\end{aligned}
$$

A tailor buys 300 metres of cloth.
(c) Using a suitable approximation find the probability that the tailor's cloth will contain less than 90 defects.

Solution

$Y \sim \operatorname{Po}(75) \therefore Y \approx \sim \mathrm{~N}(75,75):$

$$
\begin{aligned}
\mathrm{P}(Y<90) & =\mathrm{P}\left(Z<\frac{89.5-75}{\sqrt{75}}\right) \\
& =\mathrm{P}(Z<1.67) \\
& =\underline{\underline{0.9525} \text { (from the tables) }} .
\end{aligned}
$$

28. An online shop sells a computer game at an average rate of 1 per day.
(a) Find the probability that the shop sells more than 10 games in a 7 day period.

Solution

Let X equal the number of games $\therefore X \sim \operatorname{Po}(7)$. Then

$$
\begin{aligned}
\mathrm{P}(X>10) & =1-\mathrm{P}(X \leqslant 10) \\
& =1-0.9015 \text { (from the tables) } \\
& =\underline{\underline{0.0985}} .
\end{aligned}
$$

Once every 7 days the shop has games delivered before it opens.
(b) Find the least number of games the shop should have in stock immediately after a delivery so that the probability of running out of the game before the next delivery is less than 0.05 .

Solution

$$
\mathrm{P}(X>d)<0.05 \Leftrightarrow \mathrm{P}(X \leqslant d)>0.95 .
$$

Well,

$$
\mathrm{P}(X \leqslant 11)=0.9467 \text { and } \mathrm{P}(X \leqslant 12)=0.9730
$$

and $\underline{\underline{12}}$ is the least number of games.
Alternatively,

$$
\mathrm{P}(X \geqslant d)<0.05 \Leftrightarrow \mathrm{P}(X<d)>0.95 .
$$

Now,

$$
\mathrm{P}(X<12)=0.9467 \text { and } \mathrm{P}(X<13)=0.9730
$$

and $\underline{\underline{13}}$ is the least number of games.
29. In a village shop the customers must join a queue to pay. The number of customers joining the queue in a 10 minute interval is modelled by a Poisson distribution with mean 3.

Find the probability that
(a) exactly 4 customers join the queue in the next 10 minutes,

Solution

Let X equal the number of customers $\therefore X \sim \operatorname{Po}(3)$. Then

$$
\begin{aligned}
\mathrm{P}(X=4) & =\mathrm{P}(X \leqslant 4)-\mathrm{P}(X \leqslant 3) \\
& =0.8153-0.6472 \text { (from the tables) } \\
& =\underline{\underline{0.1681}} .
\end{aligned}
$$

(b) more than 10 customers join the queue in the next 20 minutes.

Solution

$X \sim \operatorname{Po}(6)$:

$$
\begin{aligned}
\mathrm{P}(X>10) & =1-\mathrm{P}(X \leqslant 10) \\
& =1-0.9574 \text { (from the tables) } \\
& =\underline{\underline{0.0426}} .
\end{aligned}
$$

30. Patients arrive at a hospital accident and emergency department at random at a rate of 6 per hour.
(a) Find the probability that, during any 90 minute period, the number of patients arriving at the hospital accident and emergency department is
(i) exactly 7 ,

Solution

Let X equal the number of patients $\therefore X \sim \operatorname{Po}(9)$. Then

$$
\begin{aligned}
\mathrm{P}(X=7) & =\mathrm{P}(X \leqslant 7)-\mathrm{P}(X \leqslant 6) \\
& =0.3239-0.2068 \text { (from the tables) } \\
& =\underline{\underline{0.1171}} .
\end{aligned}
$$

(ii) at least 10 .

Solution

$$
\begin{aligned}
\mathrm{P}(X \geqslant 10) & =1-\mathrm{P}(X \leqslant 9) \\
& =1-0.5874 \text { (from the tables) } \\
& =\underline{\underline{0.4126}} .
\end{aligned}
$$

A patient arrives at 11.30a.m.
(b) Find the probability that the next patient arrives before 11.45a.m.

Solution

$X \sim \operatorname{Po}(1.5):$

$$
\begin{aligned}
\mathrm{P}(\text { arrives before 11.45a.m. }) & =1-\mathrm{P}(X=0) \\
& =1-\mathrm{e}^{-1.5} \\
& =0.7768698399(\mathrm{FCD}) \\
& =\underline{\underline{0.7769(4 \mathrm{dp})} .}
\end{aligned}
$$

31. A company claims that it receives emails at a mean rate of 2 every 5 minutes.

Give two reasons why a Poisson distribution could be a suitable model for the number of emails received.

Solution

It is a suitable model as it explains: independently, singly, randomly, and at a constant rate.
32. Accidents occur randomly at a road junction at a rate of 18 every year. The random variable X represents the number of accidents at this road junction in the next 6 months.
(a) Write down the distribution of X.

Solution

Let X equal the number of accidents $\therefore \underline{\underline{X \sim \operatorname{Po}(9)}}$.
(b) Find $\mathrm{P}(X>7)$.

Solution

$$
\begin{aligned}
\mathrm{P}(X>7) & =1-\mathrm{P}(X \leqslant 7) \\
& =1-0.3239 \text { (from the tables) } \\
& =\underline{\underline{0.6761}} .
\end{aligned}
$$

(c) Show that the probability of at least one accident in a randomly selected month is 0.777 (correct to 3 decimal places).

Solution

$$
X \sim \operatorname{Po}(1.5):
$$

$$
\begin{aligned}
\mathrm{P}(X \geqslant 1) & =1-\mathrm{P}(X=0) \\
& =1-0.2231 \text { (from the tables) } \\
& =0.7769 \\
& =\underline{\underline{0.777(3 \mathrm{dp})}} .
\end{aligned}
$$

(d) Find the probability that there is at least one accident in exactly 4 of the next 6 months.

Solution

$$
\begin{aligned}
\mathrm{P}(\text { exactly } 4 \text { of the next } 6 \text { months }) & =\binom{6}{4}(0.7769)^{4}(0.2231)^{2} \\
& =0.2719887151(\mathrm{FCD}) \\
& =\underline{\underline{0.2720(4 \mathrm{dp})}}
\end{aligned}
$$

33. In a survey it is found that barn owls occur randomly at a rate of 9 per $1000 \mathrm{~km}^{2}$.
(a) Find the probability that in a randomly selected area of $1000 \mathrm{~km}^{2}$ there are at least

Solution

Let X equal the number of barn owls $\therefore X \sim \operatorname{Po}(9)$:

$$
\begin{aligned}
\mathrm{P}(X \geqslant 10) & =1-\mathrm{P}(X \leqslant 9) \\
& =1-0.5874 \text { (from the tables) } \\
& =\underline{\underline{0.4126}} .
\end{aligned}
$$

(b) Find the probability that in a randomly selected area of $200 \mathrm{~km}^{2}$ there are exactly

2 barn owls.

Solution

$$
X \sim \operatorname{Po}(1.8):
$$

$$
\begin{aligned}
\mathrm{P}(X=2) & =\mathrm{e}^{-1.8} \frac{1.8^{2}}{2!} \\
& =0.2677841989(\mathrm{FCD}) \\
& =\underline{\underline{0.2678(4 \mathrm{dp})} .}
\end{aligned}
$$

(c) Using a suitable approximation, find the probability that in a randomly selected area of $50000 \mathrm{~km}^{2}$ there are at least 470 barn owls.

Solution

$$
\begin{aligned}
& Y \sim \operatorname{Po}(450) \therefore Y \approx \sim \mathrm{~N}(450,450): \\
& \qquad \begin{aligned}
\mathrm{P}(Y \geqslant 470) & =\mathrm{P}\left(Z \geqslant \frac{469.5-450}{\sqrt{450}}\right) \\
& =\mathrm{P}(Z \geqslant 0.92) \\
& =1-\mathrm{P}(Z \leqslant 0.92) \\
& =1-0.8212 \text { (from the tables) } \\
& =\underline{\underline{0.1788}} .
\end{aligned}
\end{aligned}
$$

34. The number of cherries in a Rays fruit cake follows a Poisson distribution with mean 1.5.

A Rays fruit cake is to be selected at random.

Find the probability that it contains
(a) (i) exactly 2 cherries,

Solution

Let X equal the number of cherries $\therefore X \sim \operatorname{Po}(1.5)$:

$$
\begin{aligned}
\mathrm{P}(X=2) & =\mathrm{P}(X \leqslant 2)-\mathrm{P}(X \leqslant 1) \\
& =0.8088-0.5578 \text { (from the tables) } \\
& =\underline{\underline{0.2510}} .
\end{aligned}
$$

(ii) at least 1 cherry.

Solution

$$
\begin{aligned}
\mathrm{P}(X \geqslant 1) & =1-\mathrm{P}(X=0) \\
& =1-0.2231 \text { (from the tables) } \\
& =\underline{\underline{0.7769}} .
\end{aligned}
$$

Rays fruit cakes are sold in packets of 5 .
(b) Show that the probability that there are more than 10 cherries, in total, in a randomly selected packet of Rays fruit cakes, is 0.1378 correct to 4 decimal places.

Solution

$X \sim \mathrm{Po}(7.5):$

$$
\begin{aligned}
\mathrm{P}(X>10) & =1-\mathrm{P}(X \leqslant 10) \\
& =1-0.8622 \text { (from the tables) } \\
& =\underline{\underline{0.1378}} .
\end{aligned}
$$

35. A company receives telephone calls at random at a mean rate of 2.5 per hour.
(a) Find the probability that the company receives
(i) at least 4 telephone calls in the next hour,

Solution

Let X equal the number of telephone calls $\therefore X \sim \operatorname{Po}(2.5)$:

$$
\begin{aligned}
\mathrm{P}(X \geqslant 4) & =1-\mathrm{P}(X \leqslant 3) \\
& =1-0.7576 \text { (from the tables) } \\
& =\underline{\underline{0.2424}} .
\end{aligned}
$$

(ii) exactly 3 telephone calls in the next 15 minutes.

Solution

Let Y equal the number of telephone calls $\therefore Y \sim \operatorname{Po}(0.625)$:

$$
\begin{aligned}
\mathrm{P}(Y=3) & =\mathrm{e}^{-0.625} \frac{0.625^{3}}{3!} \\
& =0.02177984328(\mathrm{FCD}) \\
& =\underline{\underline{0.0218(4 \mathrm{dp})} .}
\end{aligned}
$$

(b) Find, to the nearest minute, the maximum length of time the telephone can be left unattended so that the probability of missing a telephone call is less than 0.2.

Solution

$$
\begin{aligned}
1-\mathrm{P}(X=0)<0.2 & \Rightarrow \mathrm{P}(X=0)>0.8 \\
& \Rightarrow \mathrm{e}^{-2.5 t}>0.8 \\
& \Rightarrow-2.5 t>\ln 0.8 \\
& \Rightarrow t<-0.4 \ln 0.8 \\
& \Rightarrow t<0.08925742053 \text { hours (FCD) } \\
& \Rightarrow t<5.355445232 \text { minutes (FCD) } \\
& \Rightarrow t=5 \text { minutes (nearest minute). }
\end{aligned}
$$

