Dr Oliver Mathematics
 Further Mathematics Reduction Formulae Past Examination Questions

This booklet consists of 24 questions across a variety of examination topics. The total number of marks available is 281 .
1.

$$
I_{n}=\int_{1}^{e} x^{2}(\ln x)^{n} \mathrm{~d} x, n \geqslant 0
$$

(a) Prove that, for $n \geqslant 1$,

$$
\begin{equation*}
I_{n}=\frac{1}{3} e^{3}-\frac{1}{3} n I_{n-1} \tag{4}
\end{equation*}
$$

(b) Find the exact value of I_{3}.
2.

$$
I_{n}=\int_{0}^{a}(a-x)^{n} \cos x \mathrm{~d} x, a>0, n \geqslant 0
$$

(a) Show that, for $n \geqslant 2$,
(b) Hence evaluate
3.

$$
I_{n}=\int x^{n} e^{2 x} \mathrm{~d} x, n \geqslant 0
$$

(a) Prove that, for $n \geqslant 1$,

$$
I_{n}=\frac{1}{2}\left(x^{n} e^{2 x}-n I_{n-1}\right) .
$$

(b) Find, in terms of e, the exact value of

$$
\begin{equation*}
\int_{0}^{1} x^{2} e^{2 x} \mathrm{~d} x \tag{5}
\end{equation*}
$$

4.

$$
I_{n}=\int_{0}^{1}(1-x)^{n} \cosh x \mathrm{~d} x, n \geqslant 0
$$

(a) Prove that, for $n \geqslant 2$,

$$
\begin{equation*}
I_{n}=n(n-1) I_{n-2}-n . \tag{5}
\end{equation*}
$$

(b) Find an exact expression for I_{4}, giving your answer in terms of e.
5. Given that

$$
I_{n}=\int_{0}^{4} x^{n} \sqrt{4-x} \mathrm{~d} x, n \geqslant 0
$$

(a) show that

$$
I_{n}=\frac{8 n}{2 n+3} I_{n-1}, n \geqslant 1
$$

Given that

$$
\int_{0}^{4} \sqrt{4-x} \mathrm{~d} x=\frac{16}{3}
$$

(b) use the result in part (a) to find the exact value of

$$
\begin{equation*}
\int_{0}^{4} x^{2} \sqrt{4-x} \mathrm{~d} x \tag{3}
\end{equation*}
$$

6. Given that $y=\sinh ^{n-1} x \cosh x$,
(a) show that

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=(n-1) \sinh ^{n-2} x+n \sinh ^{n} x \tag{3}
\end{equation*}
$$

The integral I_{n} is defined by

$$
I_{n}=\int_{0}^{\operatorname{arsinh} 1} \sinh ^{n} x \mathrm{~d} x, n \geqslant 0
$$

(b) Using the result in part (a), or otherwise, show that

$$
\begin{equation*}
n I_{n}=\sqrt{2}-(n-1) I_{n-2}, n \geqslant 2 . \tag{2}
\end{equation*}
$$

(c) Hence find the exact value of I_{4}.
7.

$$
\begin{equation*}
I_{n}=\int_{1}^{5} x^{n}(2 x-1)^{-\frac{1}{2}} \mathrm{~d} x, n \geqslant 0 \tag{5}
\end{equation*}
$$

(a) Prove that, for $n \geqslant 1$,

$$
(2 n+1) I_{n}=n I_{n-1}+3 \times 5^{n}-1
$$

(b) Using the reduction formula given in part (a), find the exact value of I_{2}.
8.

$$
I_{n}=\int(\ln x)^{n} \mathrm{~d} x, n \geqslant 0
$$

(a) Show that

$$
\begin{equation*}
I_{n}=x(\ln x)^{n-1}-n I_{n-1}, n \geqslant 1 . \tag{4}
\end{equation*}
$$

(b) Hence calculate the exact value of

$$
\begin{equation*}
\int_{1}^{e}(\ln x)^{3} \mathrm{~d} x . \tag{6}
\end{equation*}
$$

9. Given that

$$
\begin{equation*}
I_{n}=\int_{0}^{4} x^{n} \sqrt{16-x^{2}} \mathrm{~d} x n \geqslant 0 \tag{6}
\end{equation*}
$$

(a) prove that, for $n \geqslant 2$,
(b) Hence, showing each step of your working, find the exact value of I_{5}.
10.

$$
\begin{equation*}
I_{n}=\int_{0}^{\frac{\pi}{4}} x^{n} \sin 2 x \mathrm{~d} x, n \geqslant 0 \tag{5}
\end{equation*}
$$

(a) Prove that, for $n \geqslant 2$,

$$
\begin{equation*}
I_{n}=\frac{1}{4} n\left(\frac{\pi}{4}\right)^{n-1}-\frac{1}{4} n(n-1) I_{n-2} . \tag{4}
\end{equation*}
$$

(b) Find the exact value of I_{2}.
(c) Show that $I_{4}=\frac{1}{64}\left(\pi^{3}-24 \pi+48\right)$.
11.

$$
\begin{equation*}
I_{n}=\int \sin ^{n} x \mathrm{~d} x, n \geqslant 0 \tag{4}
\end{equation*}
$$

(a) Prove that, for $n \geqslant 2$,

$$
I_{n}=\frac{1}{n}\left(-\sin ^{n-1} x \cos x+(n-1) I_{n-2}\right) .
$$

Given that n is an odd number, $n \geqslant 3$,
(b) show that

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{2}} \sin ^{n} x \mathrm{~d} x=\frac{(n-1)(n-3) \ldots 6 \times 4 \times 2}{n(n-2)(n-4) \ldots 7 \times 5 \times 3} \tag{4}
\end{equation*}
$$

(c) Hence find
12. Given that

$$
I_{n}=\int_{0}^{\pi} e^{x} \sin ^{n} x \mathrm{~d} x, n \geqslant 0
$$

(a) show that, for $n \geqslant 2$,

$$
\begin{equation*}
I_{n}=\frac{n(n-1)}{n^{2}+1} I_{n-2} . \tag{4}
\end{equation*}
$$

(b) Find the exact value of I_{4}.
13. Given that

$$
I_{n}=\int_{0}^{8} x^{n}(8-x)^{\frac{1}{3}} \mathrm{~d} x, n \geqslant 0
$$

(a) show that

$$
\begin{equation*}
I_{n}=\frac{24 n}{3 n+4} I_{n-1}, n \geqslant 1 \tag{6}
\end{equation*}
$$

(b) Hence find the exact value of

$$
\begin{equation*}
\int_{0}^{8} x(x+5)(8-x)^{\frac{1}{3}} \mathrm{~d} x \tag{6}
\end{equation*}
$$

14.

$$
\begin{equation*}
I_{n}=\int x^{n} \cosh x \mathrm{~d} x, n \geqslant 0 \tag{4}
\end{equation*}
$$

(a) Show that, for $n \geqslant 2$,

$$
I_{n}=x^{n} \sinh x-n x^{n-1} \cosh x+n(n-1) I_{n-2} .
$$

(b) Hence show that

$$
\begin{equation*}
I_{4}=f(x) \sinh x+g(x) \cosh x+c, \tag{5}
\end{equation*}
$$

where $f(x)$ and $g(x)$ are functions to be found, and c is an arbitrary constant.
(c) Find the exact value of

$$
\begin{equation*}
\int x^{4} \cosh x \mathrm{~d} x \tag{3}
\end{equation*}
$$

giving your answer in terms of e.
15. Given that

$$
I_{n}=\int \frac{\sin n x}{\sin x} \mathrm{~d} x, n \geqslant 1
$$

(a) prove that, for $n \geqslant 3$,

$$
\begin{equation*}
I_{n}-I_{n-2}=\int 2 \cos (n-1) x \mathrm{~d} x \tag{3}
\end{equation*}
$$

(b) Hence, showing each step of your working, find the exact value of

$$
\begin{equation*}
\int_{\frac{\pi}{12}}^{\frac{\pi}{6}} \frac{\sin 5 x}{\sin x} \mathrm{~d} x \tag{7}
\end{equation*}
$$

giving your answer in the form $\frac{1}{12}(a \pi+b \sqrt{3}+c)$, where a, b, and c are integers to be found.
16. (a) Find

Given that

$$
I_{n}=\int_{0}^{1} x^{n} e^{-\frac{1}{2} x^{2}} \mathrm{~d} x
$$

(b) prove that $I_{n}=(n-1) I_{n-2}-e^{-\frac{1}{2}}, n \geqslant 2$.
(c) find the value of I_{5}, leaving your answer in terms of e.
17.

$$
\begin{equation*}
I_{n}=\int \frac{\sin n x}{\sin x} \mathrm{~d} x, n>0, n \in \mathbb{Z} \tag{6}
\end{equation*}
$$

(a) By considering $I_{n+2}-I_{n}$, or otherwise, show that

$$
I_{n+2}=\frac{2 \sin (n+1) x}{n+1}+I_{n}
$$

(b) Hence evaluate

$$
\begin{equation*}
\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\sin 6 x}{\sin x} d x \tag{7}
\end{equation*}
$$

18.

$$
I_{n}=\int \frac{x^{n}}{\sqrt{1+x^{2}}} \mathrm{~d} x
$$

(a) Show that $n I_{n}=x^{n-1} \sqrt{1+x^{2}}-(n-1) I_{n-2}, n \geqslant 2$.

The curve C has equation

$$
y^{2}=\frac{x^{2}}{\sqrt{1+x^{2}}}, y \geqslant 0
$$

The finite region, R, is bounded by C, the x-axis, and the lines with equation $x=0$ and $x=2$. The region R is rotated through 2π radians about the x-axis.
(b) Find the volume of the solid so formed, giving your answer in terms of π, surds, and natural logarithms.
19. Given that $I_{n}=\int \sec ^{n} x \mathrm{~d} x$,
(a) show that

$$
(n-1) I_{n}=\tan x \sec ^{n-2} x+(n-2) I_{n-2}, n \geqslant 2
$$

(b) Hence find the exact value of

$$
\int_{0}^{\frac{\pi}{3}} \sec ^{3} x \mathrm{~d} x
$$

giving your answer in terms of natural logarithms and surds.
20.

$$
I_{n}=\int_{0}^{\frac{\pi}{2}} \sin ^{n} x \mathrm{~d} x
$$

(a) Show that

$$
I_{n}=\frac{n-1}{n} I_{n-2}, n \in \mathbb{Z}, n \geqslant 2 .
$$

(b) Hence evaluate

$$
\int_{0}^{\frac{\pi}{2}} \sin ^{6} x\left(1+\cos ^{2} x\right) \mathrm{d} x
$$

giving your answer as a multiple of π.
21.

$$
\begin{equation*}
I_{n}=\int_{0}^{1}\left(1-x^{2}\right)^{n} \mathrm{~d} x, n \geqslant 0 \tag{7}
\end{equation*}
$$

(a) Prove that $(2 n+1) I_{n}=2 n I_{n-1}, n \geqslant 1$.
(b) Prove, by induction, that
for all $n \in \mathbb{Z}^{+}$.
22.

$$
I_{n}=\int_{0}^{\operatorname{arsinh} 1} \sinh ^{n} x, \mathrm{~d} x, n \in \mathbb{N}
$$

(a) Show that $n I_{n}=\sqrt{2}-(n-1) I_{n-2}, n \geqslant 2$.
(b) Evaluate

$$
\int_{0}^{\operatorname{arsinh} 1} \sinh ^{5} x, \mathrm{~d} x
$$

leaving your answer in surd form.
23.

$$
\begin{equation*}
I_{n}=\int_{0}^{1} x^{n} \sqrt{1-x^{2}} \mathrm{~d} x, n \geqslant 0 . \tag{3}
\end{equation*}
$$

(a) Find the value of I_{1}.
(b) Show that, for $n \geqslant 2$,

$$
\begin{equation*}
(n+2) I_{n}=(n-1) I_{n-2} . \tag{9}
\end{equation*}
$$

(c) Hence find the exact value of

$$
\begin{equation*}
\int_{0}^{1} x^{7} \sqrt{1-x^{2}} \mathrm{~d} x \tag{4}
\end{equation*}
$$

24.

$$
I_{n}=\int_{0}^{\pi} \sin ^{2 n} x \mathrm{~d} x, n \in \mathbb{N} .
$$

(a) Calculate I_{0} in terms of π.
(b) Show that

$$
I_{n}=\frac{2 n-1}{2 n} I_{n-1}, n \geqslant 1 .
$$

(c) Find I_{3} in terms of π.

The picture shows the curve with polar equation $r=a \sin ^{3} \theta, 0 \leqslant \theta \leqslant \pi$, where a is a positive constant.
(d) Using your answer to part (c), or otherwise, find the exact area bounded by this curve.

