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Dr Oliver Mathematics

Further Mathematics

Reduction Formulae

Past Examination Questions

This booklet consists of 24 questions across a variety of examination topics.
The total number of marks available is 281.

1.

In “

ż e

1

x2plnxqn dx, n ě 0.

(a) (4)Prove that, for n ě 1,
In “

1
3
e3 ´ 1

3
nIn´1.

(b) (4)Find the exact value of I3.

2.

In “

ż a

0

pa´ xqn cosx dx, a ą 0, n ě 0.

(a) (5)Show that, for n ě 2,
In “ nan´1

´ npn´ 1qIn´2.

(b) (3)Hence evaluate
ż

π
2

0

`

π
2
´ x

˘2
dx.

3.

In “

ż

xne2x dx, n ě 0.

(a) (3)Prove that, for n ě 1,
In “

1
2
pxne2x ´ nIn´1q.

(b) (5)Find, in terms of e, the exact value of

ż 1

0

x2e2x dx.

4.

In “

ż 1

0

p1´ xqn coshx dx, n ě 0.

(a) (5)Prove that, for n ě 2,
In “ npn´ 1qIn´2 ´ n.
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(b) (3)Find an exact expression for I4, giving your answer in terms of e.

5. Given that

In “

ż 4

0

xn
?

4´ x dx, n ě 0,

(a) (6)show that

In “
8n

2n` 3
In´1, n ě 1.

Given that
ż 4

0

?
4´ x dx “ 16

3
,

(b) (3)use the result in part (a) to find the exact value of

ż 4

0

x2
?

4´ x dx.

6. Given that y “ sinhn´1 x coshx,

(a) (3)show that
dy

dx
“ pn´ 1q sinhn´2 x` n sinhn x.

The integral In is defined by

In “

ż arsinh 1

0

sinhn x dx, n ě 0.

(b) (2)Using the result in part (a), or otherwise, show that

nIn “
?

2´ pn´ 1qIn´2, n ě 2.

(c) (4)Hence find the exact value of I4.

7.

In “

ż 5

1

xnp2x´ 1q´
1
2 dx, n ě 0.

(a) (5)Prove that, for n ě 1,

p2n` 1qIn “ nIn´1 ` 3ˆ 5n ´ 1.

(b) (5)Using the reduction formula given in part (a), find the exact value of I2.
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8.

In “

ż

plnxqn dx, n ě 0.

(a) (4)Show that
In “ xplnxqn´1

´ nIn´1, n ě 1.

(b) (6)Hence calculate the exact value of

ż e

1

plnxq3 dx.

9. Given that

In “

ż 4

0

xn
?

16´ x2 dxn ě 0,

(a) (6)prove that, for n ě 2,
pn` 2qIn “ 16pn´ 1qIn´2.

(b) (5)Hence, showing each step of your working, find the exact value of I5.

10.

In “

ż π
4

0

xn sin 2x dx, n ě 0.

(a) (5)Prove that, for n ě 2,

In “
1
4
n
`

π
4

˘n´1
´ 1

4
npn´ 1qIn´2.

(b) (4)Find the exact value of I2.

(c) (2)Show that I4 “
1
64
pπ3 ´ 24π ` 48q.

11.

In “

ż

sinn x dx, n ě 0.

(a) (4)Prove that, for n ě 2,

In “
1
n

`

´ sinn´1 x cosx` pn´ 1qIn´2

˘

.

Given that n is an odd number, n ě 3,

(b) (4)show that
ż

π
2

0

sinn x dx “
pn´ 1qpn´ 3q . . . 6ˆ 4ˆ 2

npn´ 2qpn´ 4q . . . 7ˆ 5ˆ 3
.
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(c) (3)Hence find
ż

π
2

0

sin5 x cos2 x dx.

12. Given that

In “

ż π

0

ex sinn x dx, n ě 0,

(a) (8)show that, for n ě 2,

In “
npn´ 1q

n2 ` 1
In´2.

(b) (4)Find the exact value of I4.

13. Given that

In “

ż 8

0

xnp8´ xq
1
3 dx, n ě 0,

(a) (6)show that

In “
24n

3n` 4
In´1, n ě 1.

(b) (6)Hence find the exact value of

ż 8

0

xpx` 5qp8´ xq
1
3 dx.

14.

In “

ż

xn coshx dx, n ě 0.

(a) (4)Show that, for n ě 2,

In “ xn sinhx´ nxn´1 coshx` npn´ 1qIn´2.

(b) (5)Hence show that
I4 “ fpxq sinhx` gpxq coshx` c,

where fpxq and gpxq are functions to be found, and c is an arbitrary constant.

(c) (3)Find the exact value of
ż

x4 coshx dx,

giving your answer in terms of e.

15. Given that

In “

ż

sinnx

sinx
dx, n ě 1,
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(a) (3)prove that, for n ě 3,

In ´ In´2 “

ż

2 cospn´ 1qx dx.

(b) (7)Hence, showing each step of your working, find the exact value of

ż

π
6

π
12

sin 5x

sinx
dx,

giving your answer in the form 1
12
paπ ` b

?
3` cq, where a, b, and c are integers to

be found.

16. (a) (2)Find
ż

xe´
1
2
x2 dx.

Given that

In “

ż 1

0

xne´
1
2
x2 dx,

(b) (5)prove that In “ pn´ 1qIn´2 ´ e
´
1
2 , n ě 2.

(c) (6)find the value of I5, leaving your answer in terms of e.

17.

In “

ż

sinnx

sinx
dx, n ą 0, n P Z.

(a) (6)By considering In`2 ´ In, or otherwise, show that

In`2 “
2 sinpn` 1qx

n` 1
` In.

(b) (7)Hence evaluate
ż π

3

π
4

sin 6x

sinx
dx,

giving your answer in the form p
?

2` q
?

3, where p and q are rational numbers to
be found.

18.

In “

ż

xn
?

1` x2
dx.
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(a) (7)Show that nIn “ xn´1
?

1` x2 ´ pn´ 1qIn´2, n ě 2.

The curve C has equation

y2 “
x2

?
1` x2

, y ě 0.

The finite region, R, is bounded by C, the x-axis, and the lines with equation x “ 0 and
x “ 2. The region R is rotated through 2π radians about the x-axis.

(b) (7)Find the volume of the solid so formed, giving your answer in terms of π, surds,
and natural logarithms.

19. (14)Given that In “

ż

secn x dx,

(a) show that
pn´ 1qIn “ tanx secn´2 x` pn´ 2qIn´2, n ě 2.

(b) Hence find the exact value of
ż π

3

0

sec3 x dx,

giving your answer in terms of natural logarithms and surds.

20.

In “

ż π
2

0

sinn x dx.

(a) (8)Show that

In “
n´ 1

n
In´2, n P Z, n ě 2.

(b) (7)Hence evaluate
ż π

2

0

sin6 xp1` cos2 xq dx,

giving your answer as a multiple of π.

21.

In “

ż 1

0

p1´ x2qn dx, n ě 0.

(a) (7)Prove that p2n` 1qIn “ 2nIn´1, n ě 1.

(b) (8)Prove, by induction, that

In ď

ˆ

2n

2n` 1

˙n

,

for all n P Z`.

22.

In “

ż arsinh 1

0

sinhn x, dx, n P N.
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(a) (9)Show that nIn “
?

2´ pn´ 1qIn´2, n ě 2.

(b) (7)Evaluate
ż arsinh 1

0

sinh5 x, dx,

leaving your answer in surd form.

23.

In “

ż 1

0

xn
?

1´ x2 dx, n ě 0.

(a) (3)Find the value of I1.

(b) (9)Show that, for n ě 2,
pn` 2qIn “ pn´ 1qIn´2.

(c) (4)Hence find the exact value of

ż 1

0

x7
?

1´ x2 dx.

24. (16)

In “

ż π

0

sin2n x dx, n P N.

(a) Calculate I0 in terms of π.

(b) Show that

In “
2n´ 1

2n
In´1, n ě 1.

(c) Find I3 in terms of π.

The picture shows the curve with polar equation r “ a sin3 θ, 0 ď θ ď π, where a is a
positive constant.

(d) Using your answer to part (c), or otherwise, find the exact area bounded by this
curve.
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