Dr Oliver Mathematics
 Further Mathematics
 Conic Sections: Rectangular Hyperbolas Past Examination Questions

This booklet consists of 21 questions across a variety of examination topics. The total number of marks available is 205 .

1. The rectangular hyperbola C has equation $x y=c^{2}$ where c is a positive constant.
(a) Show that an equation of the tangent to C at the point $P\left(c p, \frac{c}{p}\right)$ is

$$
x+y p^{2}=2 c p
$$

The tangent to C at P meets the x-axis at the point X. The point Q on C has coordinates $\left(c q, \frac{c}{q}\right), p \neq q$, such that $Q X$ is parallel to the y-axis.
(b) Show that $q=2 p$.
M is the midpoint of $P Q$.
(c) Find, in Cartesian form, an equation of the locus of M as p varies.
2. The linr $y=m x+c$ is a tangent to the rectangular hyperbola with equation $x y=-9$.
(a) Show that $c= \pm 6 \sqrt{m}$.
(b) Hence, or otherwise, find the equations of the tangents from the point $(4,-2)$ to the rectangular hyperbola $x y=-9$.
3. A hyperbola C has equations

$$
x=c t, y=\frac{c}{t}, t \neq 0
$$

where c is a positive constant and t is a parameter.
(a) Show that an equation of the normal to C at the point where $t=p$ is given by

$$
\begin{equation*}
p y+c p^{4}=p^{3} x+c . \tag{6}
\end{equation*}
$$

(b) Verify that this normal meets C again at the point at which $t=q$, where

$$
\begin{equation*}
q p^{3}+1=0 . \tag{3}
\end{equation*}
$$

4. The rectangular hyperbola C has equation $x y=c^{2}$ where c is a positive constant.
(a) Show that the tangent to C at the point $P\left(c p, \frac{c}{p}\right), p \neq 0$, has equation

$$
\begin{equation*}
p^{2} y=-x+2 c p \tag{3}
\end{equation*}
$$

The point $Q\left(c q, \frac{c}{q}\right), q \neq 0, q \neq p$, also lies on C. The tangents to C at P and Q meet at N. Given that $p+q \neq 0$,
(b) show that the y-coordinate of N is $\frac{2 c}{p+q}$.

The line joining N to the origin O is perpendicular to the chord $P Q$.
(c) Find the numerical value of $p^{2} q^{2}$.
5. The parametric equations of a hyperbola are

$$
x=\frac{3}{2}\left(t+\frac{1}{t}\right), y=\frac{5}{2}\left(t-\frac{1}{t}\right) \cdot t \neq 0 .
$$

(a) Find a cartesian equation of the hyperbola.
(b) Sketch the hyperbola, stating the coordinates of an points of intersection with the coordinate axes.
6. The point $P\left(2 p, \frac{2}{p}\right)$ and the point $Q\left(2 q, \frac{2}{q}\right)$, where $p \neq q$, lie on the rectangular hyperbola with equation $x y=4$. The tangents to the curve at the points P and Q meets at the point R.
(a) Show that at the point R,

$$
\begin{equation*}
x=\frac{4 p q}{p+q} \text { and } y=\frac{4}{p+q} . \tag{8}
\end{equation*}
$$

As p and q vary, the locus of R has equation $x y=3$.
(b) Find the relationship between p and q in the form $q=\mathrm{f}(x)$.
7. (a) Show that the normal to the rectangular hyperbola $x y=c^{2}$, at the point $P\left(c t, \frac{c}{t}\right)$, $t \neq 0$, is

$$
\begin{equation*}
y=t^{2} x+\frac{c}{t}-c t^{3} . \tag{5}
\end{equation*}
$$

The normal to the hyperbola at P meets the hyperbola again at Q.
(b) Find, in terms of t, the coordinates of the point Q.

Given that the mid-point of $P Q$ is (X, Y) and that $t \neq \pm 1$,
(c) show that $\frac{X}{Y}=-\frac{1}{t^{2}}$,
(d) show that, at t varies, the locus of the mid-point of $P Q$ is given by the equation

$$
\begin{equation*}
4 x y+c^{2}\left(\frac{y}{x}-\frac{x}{y}\right)^{2}=0 \tag{2}
\end{equation*}
$$

8. The rectangular hyperbola, H, has parametric equations $x=5 t, y=\frac{5}{t}, t \neq 0$.
(a) Write the cartesian equation of H in the form $x y=c^{2}$.

Points A and B on the hyperbola have parameters $t=1$ and $t=5$ respectively.
(b) Find the coordinates of the mid-point of $A B$.
9. The rectangular hyperbola H has equation $x y=c^{2}$, where c is a constant. The point $P\left(c t, \frac{c}{t}\right)$ is a general point on H.
(a) Show that the tangent to H at the point P has equation

$$
\begin{equation*}
t^{2} y+x=2 c t \tag{4}
\end{equation*}
$$

The tangents to H at the points A and B meets at the point $(15 c,-c)$.
(b) Find, in terms of c, the coordinates of A and B.
10. The rectangular hyperbola H has equation $x y=c^{2}$, where c is a positive constant. The point A on H has x-coordinate $3 c$.
(a) Write down the y-coordinate of A.
(b) Show that an equation of the normal to H at A is

$$
\begin{equation*}
3 y=27 x-80 c . \tag{5}
\end{equation*}
$$

The normal to H at A meets H again at the point B.
(c) Find, in terms of c, the coordinates of B.
11. The point $P\left(6 t, \frac{6}{t}\right), t \neq 0$, lies on the rectangular hyperbola H has equation $x y=36$.
(a) Show that an equation of the tangent to H at P is

$$
\begin{equation*}
y=-\frac{1}{t^{2}} x+\frac{12}{t} \tag{5}
\end{equation*}
$$

The tangent to H at the point A and the tangent to H at the point B meet the point $(-9,12)$.
(b) Find the coordinates of A and B.
12. The rectangular hyperbola H has cartesian equation $x y=9$. The points $P\left(3 p, \frac{3}{p}\right)$ and $Q\left(3 q, \frac{3}{q}\right)$ lie on H, where $p= \pm q$.
(a) Show that the equation of the tangent at P is

$$
\begin{equation*}
x+p^{2} y=6 p . \tag{4}
\end{equation*}
$$

(b) Write down the equation of the tangent at Q.

The tangent at the point P and the tangent at the point Q meet the point R.
(c) Find, as single fractions in their simplest form, the coordinates of R in terms of p and q.
13. The rectangular hyperbola H has equation $x y=c^{2}$, where c is a positive constant. The point $P\left(c t, \frac{c}{t}\right), t \neq 0$, is a general point on H.
(a) Show that an equation of the tangent to H at P is

$$
\begin{equation*}
t^{2} y+x=2 c t . \tag{4}
\end{equation*}
$$

The tangent to H at the point P meets the x-axis at the point A and the y-axis at the point B. Given that the area of the triangle $O A B$, where O is the origin, is 36,
(b) find the exact value of c, expressing your answer in the form $k \sqrt{2}$, where k is an integer.
14. The rectangular hyperbola H has cartesian equation $x y=9$. The point $P\left(3 p, \frac{3}{p}\right)$, and $Q\left(3 q, \frac{3}{q}\right)$, where $p \neq 0, q \neq 0, p \neq q$, are points on the rectangular hyperbola H.
(a) Show that an equation of the tangent to H at the point P is

$$
\begin{equation*}
p^{2} y+x=10 p \tag{4}
\end{equation*}
$$

(b) Write down the equation of the tangent at Q.

The tangents at P and Q meet at the point N. Given that $p+q \neq 0$,
(c) show that the point N has coordinates $\left(\frac{10 p q}{p+q}, \frac{10}{p+q}\right)$.

The line joining N to the origin is perpendicular to the line $P Q$.
(d) Find the value of $p^{2} q^{2}$.
15. The rectangular hyperbola H has Cartesian equation $x y=4$. The point $P\left(2 t, \frac{2}{t}\right)$ lies on H, where $t \neq 0$.
(a) Show that an equation of the normal to H at the point P is

$$
\begin{equation*}
t y-t^{3} x=2-2 t^{4} \tag{5}
\end{equation*}
$$

The normal to H at the point where $t=-\frac{1}{2}$ meets H again at the point Q.
(b) Find the coordinates of the point Q.
16. Figure 1 shows a rectangular hyperbola H with parametric equations

$$
x=3 t, y=\frac{3}{t}, t \neq 0
$$

Figure 1: $x=3 t, y=\frac{3}{t}, t \neq 0$

The line L with equation $6 y=4 x-15$ intersects H at the point P and at the point Q, as shown in Figure 1.
(a) Show that L intersects H where $4 t^{2}-5 t-6=0$.
(b) Hence, or otherwise, find the coordinates of points P and Q.
17. The rectangular hyperbola H has Cartesian equation $x y=c^{2}$. The point $P\left(2 t, \frac{2}{t}\right)$, $t>0$, is a general point on H.
(a) Show that an equation of the tangent to H at the point P is

$$
\begin{equation*}
t^{2} y+x=2 c t \tag{4}
\end{equation*}
$$

An equation of the normal to H at the point P is

$$
t^{3} x-t y=c t^{4}-c
$$

Given that the normal to H at P meets the x-axis at the point A and the tangent to H at P meets the x-axis at the point B,
(b) find, in terms of c and t, the coordinates of A and the coordinates of B.

Given that $c=4$,
(c) find, in terms of t, the area of the triangle $A P B$. Give your answer in its simplest form.
18. The rectangular hyperbola H has Cartesian equation $x y=c^{2}$, where c is a positive constant.
The point $P\left(c t, \frac{c}{t}\right), t \neq 0$, is a general point on H.
An equation of the tangent to H at P is

$$
y=-\frac{1}{t^{2}} x+\frac{2 c}{t}
$$

The points A and B lie on H.
The tangent to H at A and the tangent to H at B meet at the point $\left(-\frac{6 c}{7}, \frac{12 c}{7}\right)$.
Find, in terms of c, the coordinates of A and the coordinates of B.
19. The rectangular hyperbola H has equation $x y=9$. The point A on H has coordinates (6, $\frac{3}{2}$).
(a) Show that the normal to H at the point A has equation

$$
\begin{equation*}
2 y-8 x+45=0 \tag{5}
\end{equation*}
$$

The normal at A meets H again at the point B.
(b) Find the coordinates of B.
20. The rectangular hyperbola, H, has cartesian equation $x y=25$.
(a) Show that an equation of the normal to H at the point $P\left(5 p, \frac{5}{p}\right), p \neq 0$, is

$$
\begin{equation*}
y-p^{2} x=\frac{5}{p}-5 p^{3} \tag{5}
\end{equation*}
$$

This normal meets the line with equation $y=-x$ at the A.
(b) Show that the coordinates of A are

$$
\begin{equation*}
\left(-\frac{5}{p}+5 p, \frac{5}{p}-5 p\right) . \tag{5}
\end{equation*}
$$

The point M is the midpoint of the line segment $A P$. Given that M lies on the positive x-axis,
(c) find exact value of the x-coordinate of point M.
21. The rectangular hyperbola H has parametric equations

$$
x=4 t, y=\frac{4}{t}, t \neq 0
$$

The points P and Q on this hyperbola have parameters $t=\frac{1}{4}$ and $t=2$ respectively. The line l passes through the origin O and is perpendicular to the line $P Q$.
(a) Find an equation for l.
(b) Find a cartesian equation for H.
(c) Find the exact coordinates of the two points where l intersects H. Give your answers in their simplest form.
\qquad

