Dr Oliver Mathematics Mathematics: Higher 2011 Paper 2: Calculator 1 hour 10 minutes

The total number of marks available is 60 .
You must write down all the stages in your working.

1. $O A B C D$ is a square based pyramid as shown in the diagram below.

O is the origin, D is the point $(2,2,6)$, and $O A=4$ units. M is the mid-point of $O A$.
(a) State the coordinates of B.
(b) Express $\overrightarrow{D B}$ and $\overrightarrow{D M}$ in component form.
(c) Find the size of angle $B D M$.
2. Functions f, g, and h are defined on the set of real numbers by

$$
\begin{align*}
& \mathrm{f}(x)=x^{3}-1 \\
& \mathrm{~g}(x)=3 x+1 \\
& \mathrm{~h}(x)=4 x-5 \tag{2}
\end{align*}
$$

(a) Find $\mathrm{g}(\mathrm{f}(x))$.
(b) Show that

$$
\begin{equation*}
\mathrm{g}(\mathrm{f}(x))+x \mathrm{~h}(x)=3 x^{3}+4 x^{2}-5 x-2 . \tag{1}
\end{equation*}
$$

(c) (i) Show that $(x-1)$ is a factor of

$$
\begin{equation*}
3 x^{3}+4 x^{2}-5 x-2 \tag{5}
\end{equation*}
$$

(ii) Factorise

$$
3 x^{3}+4 x^{2}-5 x-2
$$

fully.
(d) Hence solve

$$
\begin{equation*}
\mathrm{g}(\mathrm{f}(x))+x \mathrm{~h}(x)=0 . \tag{1}
\end{equation*}
$$

3. A sequence is defined by

$$
\begin{equation*}
u_{n+1}=-\frac{1}{2} u_{n} \text { with } u_{0}=-16 \tag{1}
\end{equation*}
$$

(a) Write down the values of u_{1} and u_{2}.

A second sequence is given by $4,5,7,11, \ldots$.
It is generated by the recurrence relation

$$
v_{n+1}=p v_{n}+q \text { with } v_{1}=4
$$

(b) Find the values of p and q.

Either the sequence in (a) or the sequence in (b) has a limit.
(c) (i) Calculate this limit.
(ii) Why does the other sequence not have a limit?
4. The diagram shows the curve with equation

$$
\begin{equation*}
y=x^{3}-x^{2}-4 x+4 \tag{10}
\end{equation*}
$$

and the line with equation

$$
y=2 x+4
$$

The curve and the line intersect at the points $(-2,0),(0,4)$, and $(3,10)$.

Calculate the total shaded area.
5. Variables x and y are related by the equation

$$
\begin{equation*}
y=k x^{n} . \tag{5}
\end{equation*}
$$

The graph of $\log _{2} y$ against $\log _{2} x$ is a straight line through the points $(0,5)$ and $(4,7)$, as shown in the diagram.

Find the values of k and n.
6. (a) The expression

$$
\begin{equation*}
3 \sin x-5 \cos x \tag{4}
\end{equation*}
$$

can be written in the form

$$
R \sin (x+a)
$$

where $R>0$ and $0 \leqslant a<2 \pi$.

Calculate the values of R and a.
(b) Hence find the value of t, where $0 \leqslant t \leqslant 2$, for which

$$
\begin{equation*}
\int_{0}^{t}(3 \cos x+5 \sin x) \mathrm{d} x=3 \tag{7}
\end{equation*}
$$

7. Circle C_{1} has equation

$$
\begin{equation*}
(x+1)^{2}+(y-1)^{2}=121 . \tag{9}
\end{equation*}
$$

A circle C_{2} with equation

$$
x^{2}+y^{2}-4 x+6 y+p=0
$$

is drawn inside C_{1}.
The circles have no points of contact.
What is the range of values of p ?

