# Dr Oliver Mathematics Mathematics: Advanced Higher 2022 Paper 2: Calculator 2 hours 

The total number of marks available is 65 .
You must write down all the stages in your working.

1. Express
in partial fractions.
2. Find the exact value of

$$
\begin{equation*}
\int_{0}^{3} \frac{4}{2 x+1} \mathrm{~d} x \tag{2}
\end{equation*}
$$

3. Use the Euclidean algorithm to find integers $a$ and $b$ such that

$$
\begin{equation*}
634 a+87 b=1 \tag{3}
\end{equation*}
$$

4. Use integration by parts to find

$$
\begin{equation*}
\int(x+2)(2 x+7)^{\frac{1}{2}} \mathrm{~d} x . \tag{3}
\end{equation*}
$$

5. Matrix $\mathbf{A}$ is given by

$$
\left(\begin{array}{ccc}
1 & 3 & 1  \tag{3}\\
2 & k & 3 \\
k & 18 & -7
\end{array}\right)
$$

Find the values of $k$ so that the matrix $\mathbf{A}$ is singular.
6. The first three terms of a sequence are defined algebraically by

$$
x+5,3 x+2,5 x-1
$$

where $x \in \mathbb{N}$.
(a) Show that these three terms form the start of an arithmetic sequence.
(b) Find a simplified expression for the 15 th term of this sequence.
(c) Given that the sum of the first 20 terms of this sequence is 1130 , find the value of $x$.
7. The complex number

$$
z=3+\mathrm{i}
$$

is a root of

$$
z^{2}-6 z+a=0
$$

where $a$ is a real number.
(a) State the second root of

$$
\begin{equation*}
z^{2}-6 z+a=0 \tag{1}
\end{equation*}
$$

(b) Hence, or otherwise, find the value of $a$.

The expression

$$
z^{2}-6 z+a
$$

is a factor of

$$
z^{3}-z^{2}-20 z+b
$$

where $b$ is a real number.
(c) Find the value of $b$.
8. (a) Differentiate
with respect to $x$.
(b) Hence find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}+y \ln x=x^{-x} \tag{4}
\end{equation*}
$$

9. The matrix $\mathbf{A}$ is given by

$$
\left(\begin{array}{cc}
3 & -2  \tag{5}\\
0 & 1
\end{array}\right)
$$

Prove by induction that

$$
\mathbf{A}^{n}=\left(\begin{array}{cc}
3^{n} & 1-3^{n} \\
0 & 1
\end{array}\right)
$$

10. Solve the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-4 \frac{\mathrm{~d} y}{\mathrm{~d} x}+4 y=9 \sin x+13 \cos x \tag{9}
\end{equation*}
$$

given that $y=5$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ when $x=0$.
11. A curve defined parametrically has the following properties:

- $x=\tan ^{-1} 2 t$,
- $\frac{\mathrm{d} y}{\mathrm{~d} x}=6 t\left(1+4 t^{2}\right)$, and
- $y=5$ when $t=1$.

Find $y$ in terms of $t$.
12. Let

$$
\begin{equation*}
z=\cos \theta+\mathrm{i} \sin \theta \tag{1}
\end{equation*}
$$

(a) Use de Moivre's theorem to state an expression for $z^{4}$.
(b) State and simplify the binomial expansion of

$$
\begin{equation*}
(\cos \theta+\mathrm{i} \sin \theta)^{4} \tag{3}
\end{equation*}
$$

(c) Hence show that:
(i) $\cos 4 \theta=8 \cos ^{4} \theta-8 \cos ^{2} \theta+1$.
(ii) $\sin \theta \cot 4 \theta$ can be written in terms of $\cos \theta$ only.
13. A security spotlight is situated 10 metres from a straight fence. The spotlight rotates at a constant speed and makes one full revolution every 12 seconds.

The situation at time $t$ seconds is modelled in the diagram below, where:

- $L$ is the position of the spotlight,
- $G$ is the point on the fence nearest to the spotlight,
- $P$ is the position where the light hits the fence,
- $\theta$ is the angle between $L G$ and $L P$, and
- $x$ is the distance in metres from $G$ to $P$.


(a) Show that:
(i) $\frac{\mathrm{d} \theta}{\mathrm{d} t}=\frac{1}{6} \pi$ radians per second,
(ii) $\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{5}{3} \pi \sec ^{2} \theta$ metres per second.
(b) Prove that
(c) Hence, or otherwise, find the exact value of $\frac{\mathrm{d} x}{\mathrm{~d} t}$ when $P$ is 5 metres from $G$.


