Dr Oliver Mathematics GCSE Mathematics 2005 June Paper 6H: Calculator 2 hours

The total number of marks available is 100 .
You must write down all the stages in your working.

1. (a) Make t the subject of the formula

$$
\begin{equation*}
v=u+5 t . \tag{2}
\end{equation*}
$$

(b) Solve

$$
\frac{x-3}{5}=x-5
$$

2. Three women earned a total of $£ 36$.

They shared the $£ 36$ in the ratio $7: 3: 2$.
Donna received the largest amount.
(a) Work out the amount Donna received.

A year ago, Donna weighed 51.5 kg .
Donna now weighs $8 \frac{1}{2} \%$ less.
(b) Work out how much Donna now weighs.

Give your answer to an appropriate degree of accuracy.
3. The equation

$$
x^{3}-4 x=24 .
$$

has a solution between 3 and 4 .
Use a trial and improvement method to find this solution.
Give your answer correct to 1 decimal place.
You must show all your working.
4. The diagram shows triangle $A B C$ and a circle, centre O.

A, B, and C are points on the circumference of the circle.
$A B$ is a diameter of the circle.
$A C=16 \mathrm{~cm}$ and $B C=12 \mathrm{~cm}$.
(a) Angle $A C B=90^{\circ}$.

Give a reason why.
(b) Work out the diameter $A B$ of the circle.
(c) Work out the area of the circle.

Give your answer correct to 3 significant figures.
5. The table shows information about the number of hours that 120 children used a computer last week.

Number of hours (h)	Frequency
$0<h \leqslant 2$	10
$2<h \leqslant 4$	15
$4<h \leqslant 6$	30
$6<h \leqslant 8$	35
$8<h \leqslant 10$	25
$10<h \leqslant 12$	5

(a) Work out an estimate for the mean number of hours that the children used a computer.
Give your answer correct to two decimal places.
(b) Complete the cumulative frequency table.

Number of hours (h)	Cumulative frequency
$0<h \leqslant 2$	10
$2<h \leqslant 4$	
$4<h \leqslant 6$	
$6<h \leqslant 8$	
$8<h \leqslant 10$	
$10<h \leqslant 12$	

(c) Draw a cumulative frequency graph for your table.

(d) Use your graph to find an estimate for the number of children who used a computer for less than 7 hours last week
6. (a) Simplify $a^{3} \times a^{4}$.
(b) Simplify $3 x^{2} y \times 5 x y^{3}$.
(c) Simplify $\frac{(x-1)^{2}}{x-1}$.
(d) Factorise $a^{2}-9 b^{2}$.
7. In a sale, normal prices are reduced by 20%.

Andrew bought a saddle for his horse in the sale.
The sale price of the saddle was $£ 220$.
Calculate the normal price of the saddle.
8. Solve

$$
\begin{array}{r}
x+2 y=4 \tag{3}\\
3 x-4 y=7 .
\end{array}
$$

9. Work out

$$
\begin{equation*}
\left(3.2 \times 10^{5}\right) \times\left(4.5 \times 10^{4}\right) \tag{2}
\end{equation*}
$$

Give your answer in standard form correct to 2 significant figures.
10. A lighthouse, L, is 3.2 km due West of a port, P.

A ship, S, is 1.9 km due North of the lighthouse, L.

(a) Calculate the size of the angle marked x.

Give your answer correct to 3 significant figures.
(b) Find the bearing of the port, P, from the ship, S.

Give your answer correct to 3 significant figures.
11. Here is a diagram.

Diagram NOT accurately drawn
$B E$ is parallel to $C D$.
$A B=9 \mathrm{~cm}$.
$B C=3 \mathrm{~cm}$.
$C D=7 \mathrm{~cm}$.
$A E=6 \mathrm{~cm}$.
(a) Calculate the length of $E D$.
(b) Calculate the length of $B E$.
12.

$$
P=\pi r+2 r+2 a .
$$

$P=84$.
$r=6.7$.
(a) Work out the value of a.

Give your answer correct to 3 significant figures.
(b) Make r the subject of the formula

$$
\begin{equation*}
P=\pi r+2 r+2 a . \tag{3}
\end{equation*}
$$

13. $A B C$ is a triangle.

Diagram NOT
accurately drawn
$A B=8 \mathrm{~cm}$.
$B C=14 \mathrm{~cm}$.
Angle $A B C=106^{\circ}$.
Calculate the area of the triangle.
Give your answer correct to 3 significant figures.
14. Bill invests $£ 500$ on 1st January 2004 at a compound interest rate of $R \%$ per annum.

The value, $£ V$, of this investment after n years is given by the formula

$$
\begin{equation*}
V=500 \times(1.045)^{n} \tag{1}
\end{equation*}
$$

(a) Write down the value of R.
(b) Use your calculator to find the value of Bill's investment after 20 years.
15. The diagram below shows a 6 -sided shape.

All the corners are right angles.
All measurements are given in centimetres.

The area of the shape is $25 \mathrm{~cm}^{2}$.
(a) Show that

$$
\begin{equation*}
6 x^{2}+17 x-39=0 \tag{4}
\end{equation*}
$$

(b) (i) Solve the equation
(ii) Hence work out the length of the longest side of the shape.
16. Jeremy designs a game for a school fair.

He has two 5 -sided spinners.
The spinners are equally likely to land on each of their sides.
One spinner has 2 red sides, 1 green side, and 2 blue sides.
The other spinner has 3 red sides, 1 yellow side and 1 blue side.
(a) Calculate the probability that the two spinners will land on the same colour.

The game consists of spinning each spinner once.
It costs 20 p to play the game.
To win a prize both spinners must land on the same colour.
The prize for a win is 50 p .
100 people play the game.
(b) Work out an estimate of the profit that Jeremy should expect to make.
17. Peter transports metal bars in his van.

The van has a safety notice "Maximum Load 1200 kg ."
Each metal bar has a label "Weight 60 kg ."
For safety reasons Peter assumes that 1200 is rounded correct to 2 significant figures and 60 is rounded correct to 1 significant figure.
Calculate the greatest number of bars that Peter can safely put into the van if his assumptions are correct.
18. Simplify fully
(a) $\left(3 x y^{2}\right)^{4}$,
(b) $\frac{x^{2}-3 x}{x^{2}-8 x+15}$.
19. The diagram shows a pyramid.

The apex of the pyramid is V.
Each of the sloping edges is of length 6 cm .

The base of the pyramid is a regular hexagon with sides of length 2 cm . O is the centre of the base.

Diagram NOT accurately drawn
(a) Calculate the height of V above the base of the pyramid. Give your answer correct to 3 significant figures.
(b) Calculate the size of angle $D V A$.

Give your answer correct to 3 significant figures.
(c) Calculate the size of angle $A V C$.

Give your answer correct to 3 significant figures.
20. The graph of $y=\mathrm{f}(x)$ is shown on the grids.
(a) Sketch the graph of $y=\mathrm{f}(x-1)$.

(b) Sketch the graph of $y=2 \mathrm{f}(x)$.

