Dr Oliver Mathematics Mathematics: Advanced Higher 2008 Paper 3 hours

The total number of marks available is 100. You must write down all the stages in your working.

1. The first term of an arithmetic sequence is 2 and the 20th term is 97. Obtain the sum of the first 50 terms.

Solution

$$a = 2$$
 and $97 = a + 19d$.

(4)

(2)

Now,

$$19d = 95 \Rightarrow d = 19.$$

Finally,

$$S_{50} = \frac{50}{2} [2 \times 2 + 49 \times 5]$$

= $\underline{6225}$.

2. (a) Differentiate

$$f(x) = \cos^{-1}(3x)$$

where $-\frac{1}{3} < x < \frac{1}{3}$.

Solution

$$f'(x) = -\frac{1}{\sqrt{1 - (3x)^2}} \times 3$$
$$= -\frac{3}{\sqrt{1 - 9x^2}}.$$

(b) Given $x = 2 \sec \theta, y = 3 \sin \theta,$ (3)

use parametric differentiation to find $\frac{\mathrm{d}y}{\mathrm{d}x}$ in terms of θ .

Solution

$$\frac{\mathrm{d}x}{\mathrm{d}\theta} = 2\sec\theta\tan\theta \text{ and } \frac{\mathrm{d}y}{\mathrm{d}\theta} = 3\cos\theta.$$

Now,

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}$$

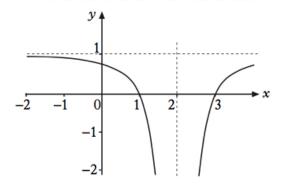
$$= \frac{3\cos\theta}{2\sec\theta\tan\theta}$$

$$= \frac{3\cos^2\theta}{\frac{2\sin\theta}{\cos\theta}}$$

$$= \frac{3\cos^3\theta}{2\sin\theta}.$$

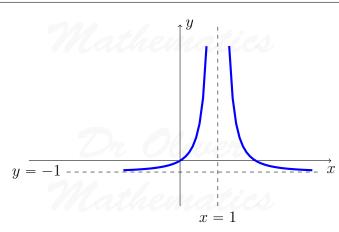
3. Part of the graph y = f(x) is shown below, where the dotted lines indicate asymptotes.

(4)



Sketch the graph y = -f(x+1) showing its asymptotes. Write down the equations of the asymptotes.

Solution



Note: the curve must pass through (0,0).

Asymptotes: $\underline{x} = \underline{1}$ and y = -1.

4. (a) Express

$$\frac{12x^2 + 20}{x(x^2 + 5)}\tag{3}$$

in partial fractions.

Solution

$$\frac{12x^2 + 20}{x(x^2 + 5)} \equiv \frac{A}{x} + \frac{Bx + C}{x^2 + 5}$$
$$\equiv \frac{A(x^2 + 5) + x(Bx + C)}{x(x^2 + 5)}$$

which means

$$12x^2 + 20 \equiv A(x^2 + 5) + x(Bx + C).$$

$$x = 0$$
: $20 = 5A \Rightarrow A = 4$.

$$\underline{x = 1}$$
: $32 = 6A + B + C \Rightarrow B + C = 8$.

$$x = -1$$
: $32 = 6A + B - C \Rightarrow B - C = 8$.

Solve: B = 8 and C = 0.

Hence,

$$\frac{12x^2 + 20}{x(x^2 + 5)} \equiv \frac{4}{x} + \frac{8x}{x^2 + 5}.$$

(b) Hence evaluate

$$\int_{1}^{2} \frac{12x^{2} + 20}{x(x^{2} + 5)} \, \mathrm{d}x. \tag{3}$$

(3)

(3)

Solution

$$\int_{1}^{2} \frac{12x^{2} + 20}{x(x^{2} + 5)} dx = \int_{1}^{2} \left(\frac{4}{x} + \frac{8x}{x^{2} + 5}\right) dx$$

$$= \left[4 \ln|x| + 4 \ln|x^{2} + 5|\right]_{x=1}^{2}$$

$$= (4 \ln 2 + 4 \ln 9) - (0 + 4 \ln 6)$$

$$= 4(\ln 18 - \ln 6)$$

$$= 4 \ln\left(\frac{18}{6}\right)$$

$$= 4 \ln 3.$$

5. A curve is defined by the equation

$$xy^2 + 3x^2y = 4$$

for x > 0 and y > 0.

(a) Use implicit differentiation to find $\frac{dy}{dx}$.

Solution

Solution

$$(1 \times y^2 + 2xy \frac{\mathrm{d}y}{\mathrm{d}x}) + (6xy + 3x^2 \frac{\mathrm{d}y}{\mathrm{d}x}) = 0 \Rightarrow (2xy + 3x^2) \frac{\mathrm{d}y}{\mathrm{d}x} = -6xy - y^2$$
$$\Rightarrow \underbrace{\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{y(6x + y)}{x(2y + 3x)}}_{}.$$

(b) Hence find an equation of the tangent to the curve where x = 1.

$$x = 1 \Rightarrow y^2 + 3y = 4$$
$$\Rightarrow y^2 + 3y - 4 = 0$$
$$\Rightarrow (y+4)(y-1) = 0$$
$$\Rightarrow y = -4 \text{ or } y = 1.$$

Since $y \neq -4$ (why?), y = 1. Now,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{7}{5}$$

and the equation of the tangent is

$$y - 1 = -\frac{7}{5}(x - 1) \Rightarrow 5y - 5 = -7(x - 1)$$

 $\Rightarrow 5y - 5 = -7x + 7$
 $\Rightarrow 7x + 5y - 12 = 0$.

6. Let the matrix

$$\mathbf{A} = \left(\begin{array}{cc} 1 & x \\ x & 4 \end{array} \right).$$

(a) Obtain the value(s) of x for which A is singular.

Solution

$$\det \mathbf{A} = 0 \Rightarrow 4 - x^2 = 0$$
$$\Rightarrow x^2 = 4$$
$$\Rightarrow \underline{x = \pm 2}.$$

(2)

(1)

(2)

(b) When x = 2, show that

$$\mathbf{A}^2 = p\mathbf{A}$$

for some constant p.

Solution

$$\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} = \begin{pmatrix} 5 & 10 \\ 10 & 20 \end{pmatrix}$$
$$= 5 \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix};$$

hence, $\underline{\underline{p}=5}$.

(c) Determine the value of q such that

$$\mathbf{A}^4 = q\mathbf{A}.$$

Solution

$$\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}^4 = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}^2 \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}^2$$
$$= 25 \times 5 \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$$
$$= 125 \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix};$$

hence, q = 125.

7. Use integration by parts to obtain

(5)

$$\int 8x^2 \sin 4x \, \mathrm{d}x.$$

Solution

$$u = 8x^2 \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = 16x \text{ and } \frac{\mathrm{d}v}{\mathrm{d}x} = \sin 4x \Rightarrow v = -\frac{1}{4}\cos 4x.$$

$$\int 8x^2 \sin 4x \, dx = -2x^2 \cos 4x + 4 \int x \cos 4x \, dx$$

$$u = x \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = 1 \text{ and } \frac{\mathrm{d}v}{\mathrm{d}x} = \cos 4x \Rightarrow v = \frac{1}{4}\sin 4x.$$

$$= -2x^{2}\cos 4x + 4\left(\frac{1}{4}x\sin 4x - \int \frac{1}{4}\sin 4x \,dx\right)$$

$$= -2x^2\cos 4x + x\sin 4x - \int \sin 4x \, \mathrm{d}x$$

$$= -2x^2 \cos 4x + x \sin 4x + \frac{1}{4} \cos 4x + c.$$

8. (a) Write down and simplify the general term in the expansion of

$$\left(x^2 + \frac{1}{x}\right)^{10}.$$

(3)

Solution

General term =
$$\begin{pmatrix} 10 \\ r \end{pmatrix} (x^2)^r \left(\frac{1}{x}\right)^{10-r}$$

= $\begin{pmatrix} 10 \\ r \end{pmatrix} x^{2r} x^{r-10}$
= $\begin{pmatrix} 10 \\ r \end{pmatrix} x^{3r-10}$.

(b) Hence, or otherwise, obtain the term in x^{14} .

Solution

$$3r - 10 = 14 \Rightarrow 3r = 24 \Rightarrow r = 8$$

(2)

(1)

(1)

and the term in
$$x^{14}$$
 is
$$\left(\begin{array}{c} 10 \\ 8 \end{array}\right) x^{14} = \underline{45x^{14}}.$$

9. (a) Write down the derivative of $\tan x$.

Solution

$$\frac{\mathrm{d}}{\mathrm{d}x}(\tan x) = \underline{\sec^2 x}.$$

(b) Show that

$$1 + \tan^2 x = \sec^2 x.$$

Solution

$$1 + \tan^2 x \equiv 1 + \frac{\sin^2 x}{\cos^2 x}$$
$$\equiv \frac{\cos^x + \sin^2 x}{\cos^2 x}$$
$$\equiv \frac{1}{\cos^2 x}$$
$$\equiv \frac{\sec^2 x}{\cos^2 x}$$

as required.

(c) Hence obtain

 $\int \tan^2 x \, \mathrm{d}x. \tag{2}$

(1)

(2)

(2)

Solution

$$\int \tan^2 x \, dx = \int (\sec^2 x - 1) \, dx$$
$$= \underline{\tan x - x + c}.$$

10. A body moves along a straight line with velocity

$$v = t^3 - 12t^2 + 32t$$

at time t.

(a) Obtain the value of its acceleration when t = 0.

Solution

$$v = t^3 - 12t^2 + 32t \Rightarrow a = 3t^2 - 24t + 32$$

and

$$t = 0 \Rightarrow \underline{a = 32}$$
.

(b) At time t = 0, the body is at the origin O. Obtain a formula for the displacement of the body at time t.

Solution

$$v = t^3 - 12t^2 + 32t \Rightarrow s = \frac{1}{4}t^4 - 4t^3 + 16t^2 + c.$$

Now,

$$s = 0, t = 0 \Rightarrow 0 = 0 + 0 + 0 + c$$

and

$$s = \frac{1}{4}t^4 - 4t^3 + 16t^2.$$

(c) Show that the body returns to O, and obtain the time, T, when this happens.

Solution

$$\frac{1}{4}t^4 - 4t^3 + 16t^2 = 0 \Rightarrow \frac{1}{4}t^2(t^2 - 16t + 64) = 0$$
$$\Rightarrow \frac{1}{4}t^2(t - 8)^2 = 0$$
$$\Rightarrow t = 0 \text{ or } \underline{t = 8}.$$

(2)

(3)

- 11. For each of the following statements, decide whether it is true or false and prove your conclusion.
 - (a) For all natural numbers m, if m^2 is divisible by 4, then m is divisible by 4.

Solution

It is <u>false</u>: 4 is divisible by 4, but m is not divisible by 4.

(b) The cube of any odd integer p plus the square of any even integer q is always odd.

Solution

It is <u>true</u>: p^3 is clearly odd (odd × odd × odd = odd), q^2 is clearly even (even × even = even), and the sum of an odd an even pair of numbers is odd (even + odd = odd).

- 12. Throughout this question, it can be assumed that -2 < x < 2.
 - (a) Obtain the first three non-zero terms in the Maclaurin expansion of $x \ln(2+x)$. (3)

Solution

Let $f(x) = \ln(2+x)$. Then

$$f'(x) = \frac{1}{2+x}$$
 and $f''(x) = -\frac{1}{(2+x)^2}$.

Next,

$$f(x) = \ln 2, f'(x) = \frac{1}{2}, \text{ and } f''(x) = -\frac{1}{4}.$$

Now,

Maclaurin expansion = $x \left[\ln 2 + \left(\frac{1}{2} \times x \right) + \frac{1}{2!} x^2 \left(-\frac{1}{4} \right) + \dots \right]$ = $x \ln 2 + \frac{1}{2} x^2 - \frac{1}{8} x^3 + \dots$ (b) Hence, or otherwise, deduce the first three non-zero terms in the Maclaurin expansion of

(2)

(2)

(7)

$$x \ln(2-x)$$
.

Solution

Maclaurin expansion =
$$x \ln[2 + (-x)]$$

= $x \left[\ln 2 + \frac{1}{2} \times (-x) + \frac{1}{2!} (-x)^2 (-\frac{1}{4}) + \dots \right]$
= $x \left[\ln 2 - \frac{1}{2} - \frac{1}{8} x^2 + \dots \right]$
= $x \left[\ln 2 - \frac{1}{2} x^2 - \frac{1}{8} x^3 + \dots \right]$

(c) Hence obtain the first **two** non-zero terms in the Maclaurin expansion of $x \ln(4-x^2)$.

Solution

$$x \ln(4 - x^{2}) = x \ln[(2 + x)(2 - x)]$$

$$= x \ln(2 + x) + x \ln(2 - x)$$

$$= (x \ln 2 + \frac{1}{2}x^{2} - \frac{1}{8}x^{3} + \dots) + (x \ln 2 - \frac{1}{2}x^{2} - \frac{1}{8}x^{3} + \dots)$$

$$= \underbrace{2x \ln 2 - \frac{1}{4}x^{3} + \dots}$$

13. (a) Obtain the general solution of the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 3\frac{\mathrm{d}y}{\mathrm{d}x} + 2y = 2x^2.$$

Solution

Complementary function:

$$m^2 - 3m + 2 = 0 \Rightarrow (m - 2)(m - 1) = 0 \Rightarrow m = 1, 2$$

and hence the complementary function is

$$y = Ae^x + Be^{2x}.$$

Particular integral: try

$$y = Cx^2 + Dx + E \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 2Cx + D \Rightarrow \frac{\mathrm{d}^2y}{\mathrm{d}x^2} = 2C.$$

Substitute into the differential equation:

$$2C - 3(2Cx + D) + 2(Cx^{2} + Dx + E) \equiv 2x^{2}.$$

 $\underline{x^2}$: $2C = 2 \Rightarrow C = 1$.

$$\overline{x}$$
: $-6C + 2D = 0 \Rightarrow 2D = 6 \Rightarrow D = 3$.

 $\underline{\underline{x}}$: $-6C + 2D = 0 \Rightarrow 2D = 6 \Rightarrow D = 3$. $\underline{\underline{Constant\ term}}$: $2C - 3D + 2E = 0 \Rightarrow 2 - 9 + 2E = 0 \Rightarrow E = \frac{7}{2}$. Hence the particular integral is $y = x^2 + 3x + \frac{7}{2}$.

General solution: hence the general solution is

$$y = Ae^x + Be^{2x} + x^2 + 3x + \frac{7}{2}.$$

(b) Given that $y = \frac{1}{2}$ and $\frac{dy}{dx} = 1$, when x = 0, find the particular solution.

(3)

Solution

$$x = 0, y = \frac{1}{2} \Rightarrow A + B + 0 + 0 + \frac{7}{2} = \frac{1}{2}$$

 $\Rightarrow A + B = -3.$

Now,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = A\mathrm{e}^x + 2Be^{2x} + 2x + 3$$

and

$$x = 0, \frac{\mathrm{d}y}{\mathrm{d}x} = 1 \Rightarrow A + 2B + 0 + 3 = 1$$
$$\Rightarrow A + 2B = -2.$$

Solve:

$$B = 1 \text{ and } A = -4.$$

Hence,

$$y = -4e^x + e^{2x} + x^2 + 3x + \frac{7}{2}.$$

14. (a) Find an equation of the plane π_1 through the points A(1,1,1), B(2,-1,1), and (3) C(0,3,3).

Solution

 $\overrightarrow{AB} = \mathbf{i} - 2\mathbf{j}$ and $\overrightarrow{AC} = -\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$. Now,

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -2 & 0 \\ -1 & 2 & 2 \end{vmatrix}$$
$$= -4\mathbf{i} - 2\mathbf{j}.$$

The equation is

$$-4x - 2y = [(-4) \times 1] + [(-2) \times 1] \Rightarrow -4x - 2y = -6$$
$$\Rightarrow 4x + 2y = 6$$
$$\Rightarrow \underline{2x + y = 3}.$$

The plane π_2 has equation x + 3y - z = 2.

(b) Given that the point (0, a, b) lies on both the planes π_1 and π_2 , find the values of a and b. (3)

Solution

Make (0, a, b) the point on the line: from 2x + y = 3 we get $\underline{a = 3}$ and from x + 3y - z = 2 we get

$$9 - b = 2 \Rightarrow \underline{b} = 7.$$

(1)

(c) Hence find an equation of the line of intersection of the planes π_1 and π_2 .

Solution

The line of intersection is parallel to

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & 0 \\ 1 & 3 & -1 \end{vmatrix} = -\mathbf{i} + 2\mathbf{j} + 5\mathbf{k}$$

and an equation of the line of intersection is

$$\frac{x}{-1} = \frac{y-3}{2} = \frac{z-7}{5}.$$

(d) Find the size of the acute angle between the planes π_1 and π_2 .

(3)

Solution

$$\cos \theta = \left| \frac{(2\mathbf{i} + \mathbf{j}).(\mathbf{i} + 3\mathbf{j} - \mathbf{k})}{\sqrt{2^2 + 1^2} \cdot \sqrt{1 + 2 + 3^2 + 1^2}} \right| \Rightarrow \cos \theta = \left| \frac{5}{\sqrt{5} \cdot \sqrt{11}} \right|$$
$$\Rightarrow \theta = 47.60795429 \text{ (FCD)}$$
$$\Rightarrow \theta = 47.6^{\circ} \text{ (1 dp)}.$$

15. Let

$$f(x) = \frac{x}{\ln x}$$

for x > 1.

(a) Derive expressions for f'(x) and f''(x), simplifying your answers.

(4)

Solution

$$f'(x) = \frac{(\ln x \times 1) - (\frac{1}{x} \times x)}{(\ln x)^2}$$
$$= \frac{\ln x - 1}{(\ln x)^2}$$

and

$$f''(x) = \frac{\left[(\ln x)^2 \times \frac{1}{x} \right] - \left[(\ln x - 1) \times \frac{2\ln x}{x} \right]}{(\ln x)^4}$$
$$= \frac{\ln x - 2(\ln x - 1)}{x(\ln x)^3}$$
$$= \frac{2 - \ln x}{x(\ln x)^3}.$$

(b) Obtain the coordinates and nature of the stationary point of the curve y = f(x).

(3)

Solution

$$f'(x) = 0 \Rightarrow \frac{\ln x - 1}{(\ln x)^2} = 0$$
$$\Rightarrow \ln x - 1 = 0$$
$$\Rightarrow \ln x = 1$$
$$\Rightarrow x = e$$
$$\Rightarrow y = e.$$

Now,

$$f''(x) = \frac{2 - \ln e}{e(\ln e)^3}$$
$$= \frac{2 - 1}{e}$$
$$> 0.$$

So, (e, e) is a minimum point.

(c) Obtain the coordinates of the point of inflexion.

Solution

$$f''(x) = 0 \Rightarrow \frac{2 - \ln x}{x(\ln x)^3} = 0$$
$$\Rightarrow \ln x = 2$$
$$\Rightarrow x = e^2$$
$$\Rightarrow y = e^2;$$

hence, $\underline{(e^2, e^2)}$ is the point of inflexion.

16. (a) Given $z=\cos\theta+\mathrm{i}\sin\theta,$ use de Moivre's theorem to write down an expression for (1) z^k in terms of θ , where k is a positive integer.

Solution

$$z^k = \underline{\cos k\theta + \mathrm{i}\sin k\theta}.$$

(b) Hence show that

$$\frac{1}{z^k} = \cos k\theta - \mathrm{i}\sin k\theta.$$

(2)

(2)

Solution

$$\frac{1}{z^k} = \frac{1}{\cos k\theta + i\sin k\theta}$$

$$= \frac{1}{\cos k\theta + i\sin k\theta} \times \frac{\cos k\theta - i\sin k\theta}{\cos k\theta - i\sin k\theta}$$

$$= \frac{\cos k\theta - i\sin k\theta}{\cos^2 k\theta + \sin^2 k\theta}$$

$$= \frac{\cos k\theta - i\sin k\theta}{\cos^2 k\theta - i\sin k\theta},$$

as required.

(c) Deduce expressions for $\cos k\theta$ and $\sin k\theta$ in terms of z.

(2)

Solution

Add:

$$z^k + \frac{1}{z^k} = 2\cos k\theta \Rightarrow \cos k\theta = \frac{1}{2}\left(z^k + \frac{1}{z^k}\right).$$

Subtract:

$$z^k - \frac{1}{z^k} = 2i\sin k\theta \Rightarrow \sin k\theta = \frac{1}{2i}\left(z^k - \frac{1}{z^k}\right).$$

(d) Show that

$$\cos^2 \theta \sin^2 \theta = -\frac{1}{16} \left(z^2 - \frac{1}{z^2} \right)^2. \tag{3}$$

Solution

$$\cos^2 \theta \sin^2 \theta = (\cos \theta \sin \theta)^2$$

$$= \left[\frac{1}{2} \left(z + \frac{1}{z} \right) \cdot \frac{1}{2i} \left(z - \frac{1}{z} \right) \right]^2$$

$$= \left[\frac{1}{4i} \left(z^2 - \frac{1}{z^2} \right) \right]^2$$

$$= \frac{1}{16} \left(z^2 - \frac{1}{z^2} \right)^2,$$

as required.

(e) Hence show that

$$\cos^2\theta\sin^2\theta = a + b\cos 4\theta,$$

(2)

for suitable constants a and b.

Solution

$$\cos^2 \theta \sin^2 \theta = -\frac{1}{16} \left(z^2 - \frac{1}{z^2} \right)^2$$

$$= -\frac{1}{16} \left(z^4 - 2 + \frac{1}{z^4} \right)$$

$$= -\frac{1}{8} \left[\frac{1}{2} \left(z^4 + \frac{1}{z^4} \right) - 1 \right]$$

$$= \frac{1}{8} - \frac{1}{8} \cos 4\theta;$$

hence, $\underline{a = \frac{1}{8}}$ and $\underline{b = -\frac{1}{8}}$.

Dr Oliver Mathematics

Dr Oliver Mathematics

Dr Oliver Mathematics