Dr Oliver Mathematics
 Further Mathematics Numerical Solutions Past Examination Questions

This booklet consists of 28 questions across a variety of examination topics. The total number of marks available is 227 .

There are three examples of this technique.

1 Interval bisection

We take, for example, $(a, \mathrm{f}(a))<0$ and $(b, \mathrm{f}(b))>0$. We then take

$$
\left(\frac{a+b}{2}, \mathrm{f}\left(\frac{a+b}{2}\right)\right)
$$

and it depends on the sign of

$$
\begin{gathered}
\mathrm{f}\left(\frac{a+b}{2}\right): \\
\left(\frac{a+b}{2}, \mathrm{f}\left(\frac{a+b}{2}\right)\right)<0 \text { then we take }\left(\frac{a+b}{2}, b\right)
\end{gathered}
$$

and

$$
\left(\frac{a+b}{2}, \mathrm{f}\left(\frac{a+b}{2}\right)\right)>0 \text { then we take }\left(a, \frac{a+b}{2}\right) .
$$

2 Linear interpolation

$$
\begin{aligned}
& \frac{x-a}{b-x}=\frac{|\mathrm{f}(a)|}{|\mathrm{f}(b)|} \\
\Rightarrow & |\mathrm{f}(b)|(x-a)=|\mathrm{f}(a)|(b-x) \\
\Rightarrow & |\mathrm{f}(b)| x-|\mathrm{f}(b)| a=|\mathrm{f}(a)| b-|\mathrm{f}(a)| x \\
\Rightarrow & |\mathrm{f}(a)| x+|\mathrm{f}(b)| x=a|\mathrm{f}(b)|+b|\mathrm{f}(a)| \\
\Rightarrow & x(|\mathrm{f}(a)|+|\mathrm{f}(b)|)=a|\mathrm{f}(b)|+b|\mathrm{f}(a)| \\
\Rightarrow & x=\frac{a|\mathrm{f}(b)|+b|\mathrm{f}(a)|}{|\mathrm{f}(a)|+|\mathrm{f}(b)|} .
\end{aligned}
$$

3 Newton-Raphson

We take as a starting point

$$
y-\mathrm{f}(a)=\mathrm{f}^{\prime}(a)(x-a)
$$

Set $y=0$:

$$
\begin{aligned}
-\mathrm{f}(a)=\mathrm{f}^{\prime}(a)(x-a) & \Rightarrow x-a=-\frac{\mathrm{f}(a)}{\mathrm{f}^{\prime}(a)} \\
& \Rightarrow x=a-\frac{\mathrm{f}(a)}{\mathrm{f}^{\prime}(a)}
\end{aligned}
$$

That is, if a is an first approximation to a root of $\mathrm{f}(x)=0$, a better approximation is, in general,

$$
a-\frac{\mathrm{f}(a)}{\mathrm{f}^{\prime}(a)} ;
$$

i.e.,

$$
x_{n+1}=x_{n}-\frac{\mathrm{f}\left(x_{n}\right)}{\mathrm{f}^{\prime}\left(x_{n}\right)}
$$

4 Questions

1. Figure 1 shows part of the graph of $y=\mathrm{f}(x)$, where

$$
\mathrm{f}(x)=x \sin x+2 x-3
$$

Figure 1: $\mathrm{f}(x)=x \sin x+2 x-3$

The equation $\mathrm{f}(x)=0$ has a single root α.
(a) Taking $x_{1}=1$ as a first approximation to α, apply the Newton-Raphson procedure once to $\mathrm{f}(x)$ to find a second approximation to α, to 3 significant figures.

Solution

$$
\begin{aligned}
\mathrm{f}(x) & =x \sin x+2 x-3 \Rightarrow \mathrm{f}(1)=-0.1585290152(\mathrm{FCD}) \\
\mathrm{f}^{\prime}(x) & =\sin x+x \cos x+2 \Rightarrow \mathrm{f}^{\prime}(1)=3.381773291 \text { (FCD) }
\end{aligned}
$$

and

$$
\begin{aligned}
x_{2} & =x_{1}-\frac{\mathrm{f}(1)}{\mathrm{f}^{\prime}(1)} \\
& =1-\frac{-0.1585290152}{3.381773291}(\mathrm{FCD}) \\
& =1.046877482(\mathrm{FCD}) \\
& =1.05(3 \mathrm{sf}) .
\end{aligned}
$$

(b) Given $x_{1}=5$ as taken as a first approximation to α, apply the Newton-Raphson procedure,
(i) use Figure 1 to produce a rough sketch of $y=\mathrm{f}(x)$ for $3 \leqslant x \leqslant 6$

Solution

and by drawing suitable tangents, and without any further calculations,
(ii) show the approximate positions of x_{2} and x_{3}, the second and third approximations to α.

2.

$$
\mathrm{f}(x)=1-\mathrm{e}^{x}+3 \sin 2 x
$$

The equation $\mathrm{f}(x)=0$ has a root α in $1.0<x<1.4$.
(a) Starting with the interval $(1.0,1.4)$, use interval bisection three times to find of value of α to one decimal place.

Solution

(b) Taking your answer to part (a) as a first approximation to α, apply the NewtonRaphson procedure once to $\mathrm{f}(x)$ to find a second approximation to α.

Solution

$$
\begin{aligned}
\mathrm{f}(x) & =1-\mathrm{e}^{x}+3 \sin 2 x \Rightarrow \mathrm{f}(1.2)=-0.2937273811 \text { (FCD) } \\
\mathrm{f}^{\prime}(x) & =-\mathrm{e}^{x}+6 \cos 2 x \Rightarrow \mathrm{f}^{\prime}(1.2)=-7.744479216(\mathrm{FCD})
\end{aligned}
$$

and

$$
\begin{aligned}
x_{2} & =x_{1}-\frac{\mathrm{f}(1.2)}{\mathrm{f}^{\prime}(1.2)} \\
& =1.2-\frac{-0.2937273811}{-7.744479216}(\mathrm{FCD}) \\
& =\underline{\underline{1.162072675(\mathrm{FCD}) .}} .
\end{aligned}
$$

(c) By considering the change in sign of $\mathrm{f}(x)$ over an appropriate interval, show your your to part (b) is accurate to 2 decimal places.

Solution

$\mathrm{f}(1.155)=0.042 \ldots$
$\mathrm{f}(1.165)=-0.027 \ldots$
It is a continuous function and there is a change of sign.
Hence $1.155<\alpha<1.165$ and $\alpha=1.16$ (2 dp).
3.

$$
\begin{equation*}
\mathrm{f}(x)=0.25 x-2+4 \sin \sqrt{x} . \tag{2}
\end{equation*}
$$

(a) Show that the equation $\mathrm{f}(x)=0$ has a root α between $x=0.24$ and $x=0.28$.

Solution

$\mathrm{f}(0.24)=-0.057 \ldots$
$\mathrm{f}(0.28)=0.089 \ldots$
It is a continuous function and there is a change of sign.
Hence $\underline{\underline{0.24<\alpha<0.28}}$.
(b) Starting with the interval [0.24, 0.28], use interval bisection three times to find an interval of width 0.005 which contains α.

Solution

x	$\mathrm{f}(x)$
0.24	-0.057
0.26	0.0173
0.28	0.0891

and it is $[0.24,0.26]$;

x	$\mathrm{f}(x)$
0.24	-0.057
0.25	-0.019
0.26	0.0173

and it is $[0.25,0.26]$;

and it is [0.255, 0.26].

The equation $\mathrm{f}(x)=0$ also has a root β between $x=10.75$ and $x=11.25$.
(c) Taking 11 as a first approximation to β, apply the Newton-Raphson procedure once to $\mathrm{f}(x)$ to find a second approximation to β. Give your answer to 2 decimal places.

Solution

$$
\begin{aligned}
\mathrm{f}(x) & =0.25 x-2+4 \sin \sqrt{x} \Rightarrow \mathrm{f}(11)=0.05344086628(\mathrm{FCD}) \\
\mathrm{f}^{\prime}(x) & =0.25+\frac{2}{\sqrt{x}} \cos \sqrt{x} \Rightarrow \mathrm{f}^{\prime}(11)=-0.3438090712(\mathrm{FCD})
\end{aligned}
$$

and

$$
\begin{aligned}
x_{2} & =x_{1}-\frac{\mathrm{f}(11)}{\mathrm{f}^{\prime}(11)} \\
& =11-\frac{0.05344086628}{-0.3438090712}(\mathrm{FCD}) \\
& =11.15543763(\mathrm{FCD}) \\
& =\underline{\underline{11.16(2 \mathrm{dp})} .}
\end{aligned}
$$

4.

$$
\mathrm{f}(x)=\ln x+x-3, x>0 .
$$

(a) Find $\mathrm{f}(2.0)$ and $\mathrm{f}(2.5)$, each to 4 decimal places, and show that the root α of the equation $\mathrm{f}(x)=0$ satisfies $2.0<\alpha<2.5$.

Solution

$$
\begin{aligned}
& \mathrm{f}(2.0)=-0.3068528194(\mathrm{FCD})=-0.3069(4 \mathrm{dp}) \\
& \mathrm{f}(2.5)=0.4162907319(\mathrm{FCD})=\underline{\underline{0.4163(4 \mathrm{dp})}}
\end{aligned}
$$

It is a continuous function and there is a change of sign.
Hence $\underline{\underline{2.0<\alpha<2.5}}$.
(b) Use linear interpolation with your values of $\mathrm{f}(2.0)$ and $\mathrm{f}(2.5)$ to estimate α, giving your answer to 3 decimal places.

Solution

$$
\begin{aligned}
\alpha & =\frac{2|f(2.5)|+2.5|f(2)|}{|f(2)|+|f(2.5)|} \\
& =\frac{2|0.4163|+2.5|-0.3069|}{|-0.3069|+|0.4163|} \\
& =2.212181969(\mathrm{FCD}) \\
& =\underline{\underline{2.212(3 \mathrm{dp})} .} .
\end{aligned}
$$

(c) Taking 2.25 as a first approximation to α, apply the Newton-Raphson process once to $\mathrm{f}(x)$ to find a second approximation to α, giving your answer to 3 decimal places.

Solution

$$
\begin{aligned}
\mathrm{f}(x) & =\ln x+x-3 \Rightarrow \mathrm{f}(2.25)=0.06093021622(\mathrm{FCD}) \\
\mathrm{f}^{\prime}(x) & =\frac{1}{x}+1 \Rightarrow \mathrm{f}^{\prime}(2.25)=\frac{13}{9}
\end{aligned}
$$

and

$$
\begin{aligned}
x_{2} & =x_{1}-\frac{\mathrm{f}(2.25)}{\mathrm{f}^{\prime}(2.25)} \\
& =2.25-\frac{0.06093021622}{\frac{13}{9}}(\mathrm{FCD}) \\
& =2.207817543(\mathrm{FCD}) \\
& =\underline{\underline{2.208}(3 \mathrm{dp}) .}
\end{aligned}
$$

(d) Show that your answer in part (d) gives α correct to 3 decimal places.

Solution

$$
f(2.2075)=-0.00063 \ldots
$$

$$
\mathrm{f}(2.2085)=0.00081 \ldots
$$

It is a continuous function and there is a change of sign.
Hence $2.2075<\alpha<2.2085$ and $\alpha=2.208$ (3 dp).
5.

$$
\begin{equation*}
\mathrm{f}(x)=x^{3}+8 x-19 . \tag{2}
\end{equation*}
$$

(a) Show that the equation $\mathrm{f}(x)=0$ has only one real root.

Solution

$\mathrm{f}^{\prime}(x)=3 x^{2}+8>0$ meaning it just one real root.
(b) Show that the equation $\mathrm{f}(x)=0$ lies between 1 and 2 .

Solution

$\mathrm{f}(1)=-10$
$\mathrm{f}(2)=5$
It is a continuous function and there is a change of sign.
Hence $\underline{\underline{1<x<2}}$.
(c) Obtain an approximation to the real root of $\mathrm{f}(x)=0$ by performing two applications of Newton-Raphson procedure tof (x), using $x=2$ as the first approximation. Give your answer to 3 decimal places.

Solution

$$
\begin{aligned}
\mathrm{f}(x) & =x^{3}+8 x-19 \Rightarrow \mathrm{f}(2)=5 \\
\mathrm{f}^{\prime}(x) & =3 x^{2}+8 \Rightarrow \mathrm{f}^{\prime}(2)=20
\end{aligned}
$$

and

$$
\begin{aligned}
x_{2} & =x_{1}-\frac{\mathrm{f}(2)}{\mathrm{f}^{\prime}(2)} \\
& =2-\frac{5}{20} \\
& =1.75 .
\end{aligned}
$$

Now,

$$
\mathrm{f}(1.75)=\frac{23}{64} \text { and } \mathrm{f}^{\prime}(1.75)=\frac{275}{16}
$$

and

$$
\begin{aligned}
x_{3} & =x_{2}-\frac{\mathrm{f}(1.75)}{\mathrm{f}^{\prime}(1.75)} \\
& =1.75-\frac{\frac{23}{64}}{\frac{275}{16}} \\
& =1.72 \dot{9} \dot{0} \\
& =1.729(3 \mathrm{dp}) .
\end{aligned}
$$

(d) By considering the change in sign of $\mathrm{f}(x)$ over an appropriate interval, show that your answer to part (c) is accurate to 3 decimal places.

Solution

$$
\begin{aligned}
\mathrm{f}(1.7285) & =-0.0077 \ldots \\
\mathrm{f}(1.7295) & =0.0092 \ldots
\end{aligned}
$$

It is a continuous function and there is a change of sign.
Hence $1.7285<x<1.7295$ and $x=1.729$ (3 dp).
6.

$$
\mathrm{f}(x)=3 x^{2}+x-\tan \left(\frac{x}{2}\right)-2,-\pi<x<\pi .
$$

The equation $\mathrm{f}(x)=0$ has a root α in the interval $[0.7,0.8]$.
(a) Use linear interpolation, on the values at the end points of this interval, to obtain an approximation to α. Give your answer to 3 decimal places.

Solution

$$
\begin{aligned}
& \mathrm{f}(0.7)=-0.1950284948 \text { (FCD) } \\
& \mathrm{f}(0.8)=0.2972067813(\mathrm{FCD}) \\
& \qquad \begin{aligned}
\alpha & =\frac{0.7|\mathrm{f}(0.8)|+0.8|\mathrm{f}(0.7)|}{|\mathrm{f}(0.7)|+|\mathrm{f}(0.8)|} \\
& =0.7396209911(\mathrm{FCD}) \\
& =\underline{\underline{0.740(3 \mathrm{dp})} .}
\end{aligned}
\end{aligned}
$$

(b) Taking 0.75 as a first approximation to α, apply the Newton-Raphson process once to $\mathrm{f}(x)$ to find a second approximation to α. Give your answer to 3 decimal places.

Solution

$$
\begin{aligned}
\mathrm{f}(x) & =3 x^{2}+x-\tan \left(\frac{x}{2}\right)-2 \Rightarrow \mathrm{f}(0.75)=0.04387342407 \\
\mathrm{f}^{\prime}(x) & =6 x+1-\frac{1}{2} \sec ^{2}\left(\frac{x}{2}\right) \Rightarrow \mathrm{f}^{\prime}(0.75)=4.922529059
\end{aligned}
$$

and

$$
\begin{aligned}
x_{2} & =0.75-\frac{\mathrm{f}(0.75)}{\mathrm{f}^{\prime}(0.75)} \\
& =0.7410872189(\mathrm{FCD}) \\
& =\underline{\underline{0.741(3 \mathrm{dp})} .}
\end{aligned}
$$

7.

$$
\mathrm{f}(x)=4 \cos x+\mathrm{e}^{-x} .
$$

(a) Show that the equation $\mathrm{f}(x)=0$ has a root α between 1.6 and 1.7.

Solution

$\mathrm{f}(1.6)=0.085 \ldots$
$\mathrm{f}(1.7)=-0.33 \ldots$
It is a continuous function and there is a change of sign.
Hence $\underline{\underline{1.6<\alpha<1.7}}$.
(b) Taking 1.6 as a first approximation to α, apply the Newton-Raphson process once
to $\mathrm{f}(x)$ to find a second approximation to α. Give your answer to 3 significant figures.

Solution

$$
\begin{aligned}
\mathrm{f}(x) & =4 \cos x+\mathrm{e}^{-x} \Rightarrow \mathrm{f}(1.6)=0.08509842879 \\
\mathrm{f}^{\prime}(x) & =-4 \sin x-\mathrm{e}^{-x} \Rightarrow \mathrm{f}^{\prime}(1.6)=-4.20019093
\end{aligned}
$$

and

$$
\begin{aligned}
x_{2} & =1.6-\frac{\mathrm{f}(1.6)}{\mathrm{f}^{\prime}(1.6)} \\
& =1.62026061(\mathrm{FCD}) \\
& =\underline{\underline{1.62(3 \mathrm{sf})}} .
\end{aligned}
$$

8.

$$
\begin{equation*}
\mathrm{f}(x)=3 \sqrt{x}+\frac{18}{\sqrt{x}}-20 \tag{2}
\end{equation*}
$$

(a) Show that the equation $\mathrm{f}(x)=0$ has a root α between [1.1,1.2].

Solution

$\mathrm{f}(1.1)=0.308 \ldots$
$f(1.2)=-0.281 \ldots$
It is a continuous function and there is a change of sign.
Hence $\underline{\underline{1.1<\alpha<1.2}}$.
(b) Find $\mathrm{f}^{\prime}(x)$.

Solution

$$
\begin{aligned}
\mathrm{f}(x)=3 \sqrt{x}+\frac{18}{\sqrt{x}}-20 & \Rightarrow \mathrm{f}(x)=3 x^{\frac{1}{2}}+18 x^{-\frac{1}{2}}-20 \\
& \Rightarrow \underline{\underline{\mathrm{f}^{\prime}(x)}=\frac{3}{2} x^{-\frac{1}{2}}-9 x^{-\frac{3}{2}}}
\end{aligned}
$$

(c) Using $x_{0}=1.1$ as a first approximation to α, apply the Newton-Raphson process once to $\mathrm{f}(x)$ to find a second approximation to α, giving your answer to 3 significant figures.

Solution

$$
\begin{aligned}
\mathrm{f}(x) & =3 x^{\frac{1}{2}}+18 x^{-\frac{1}{2}}-20 \Rightarrow \mathrm{f}(1.1)=0.3087531509 \\
\mathrm{f}^{\prime}(x) & =\frac{3}{2} x^{-\frac{1}{2}}-9 x^{-\frac{3}{2}} \Rightarrow \mathrm{f}^{\prime}(1.1)=-6.370863665
\end{aligned}
$$

and

$$
\begin{aligned}
x_{2} & =1.1-\frac{\mathrm{f}(1.1)}{\mathrm{f}^{\prime}(1.1)} \\
& =1.148463312(\mathrm{FCD}) \\
& =\underline{\underline{1.15(3 \mathrm{sf})} .}
\end{aligned}
$$

9. Figure 2 shows part of the curve with equation $y=\mathrm{f}(x)$, where

$$
\mathrm{f}(x)=1-x-\sin \left(x^{2}\right) .
$$

Figure 2: $\mathrm{f}(x)=1-x-\sin \left(x^{2}\right)$

The point A, with x-coordinate p, is a stationary point on the curve. The equation $\mathrm{f}(x)=0$ has a root α in the interval $0.6<\alpha<0.7$.
(a) Explain why $x_{0}=p$ is not suitable to use as a first approximation to α when applying the Newton-Raphson process to $\mathrm{f}(x)$.

Solution

Because it is stationary, i.e., the tangent is parallel to the x-axis
(b) Using $x_{0}=0.6$ as a first approximation to α, apply the Newton-Raphson process once to $\mathrm{f}(x)$ to find a second approximation to α, giving your answer to 3 decimal places.

Solution

$$
\begin{aligned}
\mathrm{f}(x) & =1-x-\sin \left(x^{2}\right) \Rightarrow \mathrm{f}(0.6)=0.04772576672 \\
\mathrm{f}^{\prime}(x) & =-1-2 x \cos \left(x^{2}\right) \Rightarrow \mathrm{f}^{\prime}(0.6)=-2.123076188
\end{aligned}
$$

and

$$
\begin{aligned}
x_{2} & =0.6-\frac{\mathrm{f}(0.6)}{\mathrm{f}^{\prime}(0.6)} \\
& =0.6224795356(\mathrm{FCD}) \\
& =\underline{\underline{0.622(3 \mathrm{dp})}} .
\end{aligned}
$$

(c) By considering the change in sign of $\mathrm{f}(x)$ over an appropriate interval, show your your to part (b) is accurate to 3 decimal places.

Solution

$\mathrm{f}(0.6215)=0.0017 \ldots$
$f(0.6225)=-0.00038 \ldots$
It is a continuous function and there is a change of sign.
Hence $0.6215<\alpha<0.6225$ and $\underline{\underline{\alpha=0} 0.622(3 \mathrm{dp})}$.
10. Given that α is the only real root of the equation

$$
\begin{equation*}
\sin 2 x-\ln 3 x=0 \tag{2}
\end{equation*}
$$

(a) show that $0.8<\alpha<0.9$.

Solution

$f(0.8)=0.124 \ldots$
$\mathrm{f}(0.9)=-0.019 \ldots$
It is a continuous function and there is a change of sign.
Hence $\underline{\underline{0.8<\alpha<0.9}}$.
(b) Taking 0.9 as a first approximation to α, apply the Newton-Raphson process once to $\mathrm{f}(x)$ to find a second approximation to α, giving your answer to 3 decimal places.

Solution

$$
\begin{aligned}
\mathrm{f}(x) & =\sin 2 x-\ln 3 x \Rightarrow \mathrm{f}(0.9)=-0.01940414213 \\
\mathrm{f}^{\prime}(x) & =2 \cos 2 x-\frac{1}{x} \Rightarrow \mathrm{f}^{\prime}(0.9)=-1.5655153
\end{aligned}
$$

and

$$
\begin{aligned}
x_{2} & =0.9-\frac{\mathrm{f}(0.9)}{\mathrm{f}^{\prime}(0.9)} \\
& =0.8876052683(\mathrm{FCD}) \\
& =\underline{\underline{0.888(3 \mathrm{dp})} .}
\end{aligned}
$$

(c) Use linear interpolation once on the interval $[0.8,0.9]$ to find another approximation to α, giving your answer to 3 decimal places.

Solution

$$
\begin{aligned}
& \mathrm{f}(0.8)=0.1241048657(\mathrm{FCD}) \\
& \mathrm{f}(0.9)=-0.01940414213(\mathrm{FCD})
\end{aligned}
$$

$$
\begin{aligned}
\alpha & =\frac{0.8|\mathrm{f}(0.9)|+0.9|\mathrm{f}(0.8)|}{|\mathrm{f}(0.8)|+|\mathrm{f}(0.9)|} \\
& =0.8864787985(\mathrm{FCD}) \\
& =\underline{\underline{0.886(3 \mathrm{dp})} .}
\end{aligned}
$$

11. Given that α is the only real root of the equation

$$
\begin{equation*}
x^{3}-x^{2}-6=0, \tag{2}
\end{equation*}
$$

(a) show that $2.2<\alpha<2.3$.

Solution
$\mathrm{f}(2.2)=-0.192$
$\mathrm{f}(2.3)=0.877$
It is a continuous function and there is a change of sign.
Hence $\underline{\underline{2.2<\alpha<2.3}}$.
(b) Taking 2.2 as a first approximation to α, apply the Newton-Raphson process once
to $\mathrm{f}(x)$ to find a second approximation to α, giving your answer to 3 decimal places.

Solution

$$
\begin{aligned}
\mathrm{f}(x) & =x^{3}-x^{2}-6 \Rightarrow \mathrm{f}(2.2)=-0.192 \\
\mathrm{f}^{\prime}(x) & =3 x^{2}-2 x \Rightarrow \mathrm{f}^{\prime}(2.2)=10.12
\end{aligned}
$$

and

$$
\begin{aligned}
x_{2} & =2.2-\frac{\mathrm{f}(2.2)}{\mathrm{f}^{\prime}(2.2)} \\
& =2.218972332(\mathrm{FCD}) \\
& =\underline{\underline{2.219}(3 \mathrm{dp}) .}
\end{aligned}
$$

(c) Use linear interpolation once on the interval [2.2,2.3] to find another approximation to α, giving your answer to 3 decimal places.

Solution

$\mathrm{f}(2.2)=-0.192$
$\mathrm{f}(2.3)=0.877$

$$
\begin{aligned}
\alpha & =\frac{2.2|\mathrm{f}(2.3)|+2.3|\mathrm{f}(2.2)|}{|\mathrm{f}(2.2)|+|\mathrm{f}(2.3)|} \\
& =2.171970803(\mathrm{FCD}) \\
& =\underline{\underline{2.172}(3 \mathrm{dp})} .
\end{aligned}
$$

12.

$$
\begin{equation*}
\mathrm{f}(x)=x \cos x-2 x+5 \tag{2}
\end{equation*}
$$

(a) Show that $\mathrm{f}(x)=0$ has a root α in the interval $[2,2.1]$.

Solution

$\mathrm{f}(2)=0.167 \ldots$
$\mathrm{f}(2.1)=-0.260 \ldots$
It is a continuous function and there is a change of sign.
Hence $\underline{\underline{2<\alpha<2.1}}$.
(b) Taking 2 as a first approximation to α, apply the Newton-Raphson process once to $\mathrm{f}(x)$ to find a second approximation to α, giving your answer to 2 decimal places.

Solution

$$
\begin{aligned}
\mathrm{f}(x) & =x \cos x-2 x+5 \Rightarrow \mathrm{f}(2)=0.1677063269 \text { (FCD) } \\
\mathrm{f}^{\prime}(x) & =\cos x-x \sin x-2 \Rightarrow \mathrm{f}^{\prime}(2)=-4.23474169 \text { (FCD) }
\end{aligned}
$$

and

$$
\begin{aligned}
x_{2} & =2-\frac{\mathrm{f}(2)}{\mathrm{f}^{\prime}(2)} \\
& =2.036602493(\mathrm{FCD}) \\
& =\underline{\underline{2.04(2 \mathrm{dp})} .}
\end{aligned}
$$

(c) Show that your answer to part (b) gives α to 2 decimal places.

Solution

$\mathrm{f}(2.035)=0.018 \ldots$
$\mathrm{f}(2.045)=-0.023 \ldots$
It is a continuous function and there is a change of sign.
Hence $2.035<\alpha<2.045$ and $\alpha=2.04(2 \mathrm{dp})$.
13.

$$
\mathrm{f}(x)=3 x^{2}-\frac{11}{x^{2}}
$$

(a) Write down, to 3 decimal places, the value of $f(1.3)$ and the value of $f(1.4)$.

Solution

$$
\begin{aligned}
& \mathrm{f}(1.3)=-1.43887574(\mathrm{FCD})=-1.439(3 \mathrm{dp}) \\
& \mathrm{f}(1.4)=0.267755102(\mathrm{FCD})=\underline{\underline{0.268(3 \mathrm{dp})}}
\end{aligned}
$$

The equation $\mathrm{f}(x)=0$ has a root α between 1.3 and 1.4.
(b) Starting with the interval $[1.3,1.4]$, use interval bisection three times to find an interval of width 0.025 which contains α.

Solution

x	$\mathrm{f}(x)$
1.3	-1.438
1.35	-0.568
1.4	0.267

and it is $[1.35,1.4]$;

x	$\mathrm{f}(x)$
1.35	-0.568
1.375	-0.146
1.4	0.267

and it is $[1.375,1.4]$.
(c) Taking 1.4 as a first approximation to α, apply the Newton-Raphson process once to $\mathrm{f}(x)$ to find a second approximation to α, giving your answer to 3 decimal places.

Solution

$$
\begin{aligned}
\mathrm{f}(x)=3 x^{2}-\frac{11}{x^{2}} & \Rightarrow \mathrm{f}(x)=3 x^{2}-11 x^{-2} \\
& \Rightarrow \mathrm{f}^{\prime}(x)=6 x+22 x^{-3}
\end{aligned}
$$

and we have

$$
\mathrm{f}^{\prime}(1.4)=16.41749271(\mathrm{FCD})
$$

Now,

$$
\begin{aligned}
x_{2} & =1.4-\frac{\mathrm{f}(1.4)}{\mathrm{f}^{\prime}(1.4)} \\
& =1.383675948493(\mathrm{FCD}) \\
& =\underline{\underline{1.384(2 \mathrm{dp})} .}
\end{aligned}
$$

14.

$$
\mathrm{f}(x)=x^{3}-\frac{7}{x}+2, x>0
$$

(a) Show that the equation $\mathrm{f}(x)=0$ has a root α between 1.4 and 1.5.

Solution

$\mathrm{f}(1.4)=-\frac{32}{125}$
$\mathrm{f}(1.5)=\frac{17}{24}$
It is a continuous function and there is a change of sign.
Hence $1.4<\alpha<1.5$.
(b) Starting with the interval $[1.4,1.5]$, use interval bisection three times to find an interval of width 0.025 which contains α.

Solution

x	$\mathrm{f}(x)$
1.4	-0.256
1.45	0.221
1.5	0.708

and it is $[1.4,1.45]$;

x	$\mathrm{f}(x)$
1.4	-0.256
1.425	-0.018
1.45	0.221

and it is [1.425, 1.45].
(c) Taking 1.45 as a first approximation to α, apply the Newton-Raphson process once to

$$
\mathrm{f}(x)=x^{3}-\frac{7}{x}+2
$$

to find a second approximation to α, giving your answer to 3 decimal places.

Solution

$$
\begin{aligned}
\mathrm{f}(x)=x^{3}-\frac{7}{x}+2 & \Rightarrow \mathrm{f}(x)=x^{3}-7 x^{-1}+2 \\
& \Rightarrow \mathrm{f}^{\prime}(x)=3 x^{2}+7 x^{-2}
\end{aligned}
$$

Now,

$$
\mathrm{f}(1.45)=0.2210387931(\mathrm{FCD}) \text { and } \mathrm{f}^{\prime}(1.45)=9.636869798(\mathrm{FCD})
$$

and

$$
\begin{aligned}
x_{2} & =1.45-\frac{\mathrm{f}(1.45)}{\mathrm{f}^{\prime}(1.45)} \\
& =1.427063217(\mathrm{FCD}) \\
& =\underline{\underline{1.427(2 \mathrm{dp})} .}
\end{aligned}
$$

15.

$$
f(x)=5 x^{2}-4 x^{\frac{3}{2}}-6, x \geqslant 0
$$

The root α the equation $\mathrm{f}(x)=0$ lies in the interval $[1.6,1.8]$.
(a) Use linear interpolation once on the interval $[1.6,1.8]$ to find to approximation to α. Give your answer to 3 decimal places.

Solution

$$
\begin{aligned}
& \mathrm{f}(1.6)=-1.29543081 \text { (FCD) } \\
& \mathrm{f}(1.8)=0.5401863372(\mathrm{FCD}) \\
& \qquad \begin{aligned}
\alpha & =\frac{1.6|\mathrm{f}(1.8)|+1.8|\mathrm{f}(1.6)|}{|\mathrm{f}(1.6)|+|\mathrm{f}(1.8)|} \\
& =1.741143899(\mathrm{FCD}) \\
& =\underline{\underline{1.741(3 \mathrm{dp}) .} .}
\end{aligned}
\end{aligned}
$$

(b) Differentiate $\mathrm{f}(x)$ to find $\mathrm{f}^{\prime}(x)$.

Solution

$$
\mathrm{f}(x)=5 x^{2}-4 x^{\frac{3}{2}}-6 \Rightarrow \mathrm{f}^{\prime}(x)=10 x-6 x^{\frac{1}{2}} .
$$

(c) Taking 1.7 as a first approximation to α, apply the Newton-Raphson process once
to $\mathrm{f}(x)$ to find a second approximation to α. Give your answer to 3 decimal places.

Solution

$$
\mathrm{f}(1.7)=-0.4161152711(\mathrm{FCD}) \text { and } \mathrm{f}^{\prime}(1.7)=9.176957114(\mathrm{FCD})
$$

and

$$
\begin{aligned}
x_{2} & =1.7-\frac{\mathrm{f}(1.7)}{\mathrm{f}^{\prime}(1.7)} \\
& =1.745343491(\mathrm{FCD}) \\
& =\underline{\underline{1.745(3 \mathrm{dp})} .}
\end{aligned}
$$

16.

$$
\begin{equation*}
\mathrm{f}(x)=3^{x}+3 x-7 \tag{2}
\end{equation*}
$$

(a) Show that $\mathrm{f}(x)=0$ has a root α between $x=1$ and $x=2$.

Solution

$\mathrm{f}(1)=-1$
$f(2)=8$
It is a continuous function and there is a change of sign.
Hence $\underline{\underline{1<\alpha<2}}$.
(b) Starting with the interval [1, 2], use interval bisection three times to find an interval of width 0.25 which contains α.

Solution

x	$\mathrm{f}(x)$
1	-1
1.5	2.6961
2	8

and it is $[1,1.5]$;

| | |
| :---: | :---: | :---: |
| x | $\mathrm{f}(x)$ |
| 1 | -1 |
| 1.25 | 0.6982 |
| 1.5 | 2.6961 |

and it is [1, 1.25].
17.

$$
\begin{equation*}
\mathrm{f}(x)=x^{2}+\frac{5}{2 x}-3 x-1, x \neq 0 \tag{2}
\end{equation*}
$$

(a) Differentiate $\mathrm{f}(x)$ to find $\mathrm{f}^{\prime}(x)$.

Solution

$$
\begin{aligned}
\mathrm{f}(x)=x^{2}+\frac{5}{2 x}-3 x-1 & \Rightarrow \mathrm{f}(x)=x^{2}+\frac{5}{2} x^{-1}-3 x-1 \\
& \Rightarrow \mathbf{f}^{\prime}(x)=2 x-\frac{5}{2} x^{-2}-3 .
\end{aligned}
$$

The root α the equation $\mathrm{f}(x)=0$ lies in the interval $[0.7,0.9]$.
(b) Taking 0.8 as a first approximation to α, apply the Newton-Raphson process once to $\mathrm{f}(x)$ to find a second approximation to α. Give your answer to 3 decimal places.

Solution

$$
f(0.8)=\frac{73}{200} \text { and } f^{\prime}(0.8)=-\frac{849}{160} .
$$

Now,

$$
\begin{aligned}
x_{2} & =0.8-\frac{\mathrm{f}(0.8)}{\mathrm{f}^{\prime}(0.8)} \\
& =0.868786808(\mathrm{FCD}) \\
& =\underline{\underline{0.869}(3 \mathrm{dp}) .}
\end{aligned}
$$

18. (a) Show that $\mathrm{f}(x)=x^{4}+x-1$ has a real root α in the interval $[0.5,1.0]$.

Solution

$\mathrm{f}(0.5)=-\frac{7}{16}$
$\mathrm{f}(2)=1$
It is a continuous function and there is a change of sign.
Hence $\underline{\underline{0.5<\alpha<1}}$.
(b) Starting with the interval $[0.5,1.0]$, use interval bisection three times to find an interval of width 0.125 which contains α.

Solution

x	$\mathrm{f}(x)$
0.5	-0.437
0.75	0.4611
1	1

and it is [0.5, 0.75];

x	$\mathrm{f}(x)$
0.5	-0.437
0.625	-0.222
0.75	0.4611

and it is $\underline{\underline{[0.625,0.75]}}$.
(c) Taking 0.75 as a first approximation to α, apply the Newton-Raphson process once to $\mathrm{f}(x)$ to find a second approximation to α. Give your answer to 3 decimal places.

Solution

$$
\begin{aligned}
\mathrm{f}(x) & =x^{4}+x-1 \Rightarrow \mathrm{f}(0.75)=\frac{17}{256} \\
\mathrm{f}^{\prime}(x) & =4 x^{3}+1 \Rightarrow \mathrm{f}^{\prime}(0.75)=\frac{43}{16}
\end{aligned}
$$

and

$$
\begin{aligned}
x_{2} & =0.75-\frac{\mathrm{f}(0.75)}{\mathrm{f}^{\prime}(0.75)} \\
& =0.7252906977(\mathrm{FCD}) .
\end{aligned}
$$

Now,

$$
\mathrm{f}\left(x_{2}\right)=2.015719042 \times 10^{-3} \text { and } \mathrm{f}^{\prime}\left(x_{2}\right)=2.526146811
$$

and

$$
\begin{aligned}
x_{3} & =0.7252906977-\frac{2.015719042 \times 10^{-3}}{2.526146811}(\mathrm{FCD}) \\
& =0.7244927555(\mathrm{FCD}) \\
& =\underline{\underline{0.724(3 \mathrm{dp})} .}
\end{aligned}
$$

19.

$$
\mathrm{f}(x)=x^{2}+\frac{3}{4 \sqrt{x}}-3 x-7, x>0
$$

The root α the equation $\mathrm{f}(x)=0$ lies in the interval $[3,5]$.
Taking 4 as a first approximation to α, apply the Newton-Raphson process once to $\mathrm{f}(x)$ to find a second approximation to α. Give your answer to 2 decimal places.

Solution

$$
\begin{aligned}
\mathrm{f}(x)=x^{2}+\frac{3}{4 \sqrt{x}}-3 x-7 & \Rightarrow \mathrm{f}(x)=x^{2}+\frac{3}{4} x^{-\frac{1}{2}}-3 x-7 \\
& \Rightarrow \mathrm{f}^{\prime}(x)=2 x-\frac{3}{8} x^{-\frac{3}{2}}-3
\end{aligned}
$$

Now,

$$
\mathrm{f}(4)=-\frac{21}{8} \text { and } \mathrm{f}^{\prime}(4)=\frac{317}{64}
$$

and

$$
\begin{aligned}
x_{2} & =4-\frac{\mathrm{f}(4)}{\mathrm{f}^{\prime}(4)} \\
& =4.529968454(\mathrm{FCD}) \\
& =4.53(2 \mathrm{dp}) .
\end{aligned}
$$

20.

$$
\begin{equation*}
\mathrm{f}(x)=\tan \left(\frac{x}{2}\right)+3 x-6,-\pi<x<\pi . \tag{2}
\end{equation*}
$$

(a) Show that $\mathrm{f}(x)=0$ has a root α in the interval $[1,2]$.

Solution

$\mathrm{f}(1)=-2.45369751$ (FCD)
$\mathrm{f}(2)=1.557407725$ (FCD)
It is a continuous function and there is a change of sign.
Hence $1<\alpha<2$.
(b) Use linear interpolation once on the interval [2.2, 2.3] to find another approximation to α, giving your answer to 3 decimal places.

Solution

$$
\begin{aligned}
\alpha & =\frac{1|\mathrm{f}(2)|+2|\mathrm{f}(1)|}{|\mathrm{f}(1)|+|\mathrm{f}(2)|} \\
& =1.611726037(\mathrm{FCD}) \\
& =\underline{\underline{1.61(2 \mathrm{dp})} .}
\end{aligned}
$$

21.

$$
\mathrm{f}(x)=2 x^{\frac{1}{2}}+x^{-\frac{1}{2}}-5, x>0
$$

(a) Find $\mathrm{f}^{\prime}(x)$.

Solution

$$
\mathrm{f}(x)=2 x^{\frac{1}{2}}+x^{-\frac{1}{2}}-5 \Rightarrow \underline{\underline{\mathrm{f}^{\prime}(x)=x^{-\frac{1}{2}}-\frac{1}{2} x^{-\frac{3}{2}}}}
$$

The equation $\mathrm{f}(x)=0$ has a root α in the interval $[4.5,5.5]$.
(b) Using $x_{0}=5$ as a first approximation to α, apply the Newton-Raphson process once to $\mathrm{f}(x)$ to find a second approximation to α, giving your answer to 3 significant figures.

Solution

$$
\mathrm{f}(5)=-0.0806504495(\mathrm{FCD}) \text { and } \mathrm{f}^{\prime}(5)=0.4024922359(\mathrm{FCD})
$$

and

$$
\begin{aligned}
x_{1} & =5-\frac{\mathrm{f}(5)}{\mathrm{f}^{\prime}(5)} \\
& =5.200377653(\mathrm{FCD}) \\
& =5.20(2 \mathrm{dp}) .
\end{aligned}
$$

22.

$$
\begin{equation*}
\mathrm{f}(x)=\cos \left(x^{2}\right)-x+3,0<x<\pi . \tag{2}
\end{equation*}
$$

(a) Show that the equation $\mathrm{f}(x)=0$ has a root α in the interval $[2.5,3]$.

Solution

$\mathrm{f}(2.5)=1.499449418$ (FCD)
$\mathrm{f}(3)=-0.9111302611$ (FCD)
It is a continuous function and there is a change of sign.
Hence $\underline{\underline{2.5<\alpha<3}}$.
(b) Use linear interpolation once on the interval $[2.5,3]$ to find to approximation to α, giving your answer to 2 decimal places.

Solution

$$
\begin{aligned}
\alpha & =\frac{2.5|\mathrm{f}(3)|+3|\mathrm{f}(2.5)|}{|\mathrm{f}(2.5)|+|\mathrm{f}(3)|} \\
& =2.811014282(\mathrm{FCD}) \\
& =\underline{\underline{2.81(2 \mathrm{dp})} .} .
\end{aligned}
$$

23.

$$
\begin{equation*}
f(x)=\frac{1}{2} x^{4}-x^{3}+x-3 . \tag{2}
\end{equation*}
$$

(a) Show that $\mathrm{f}(x)=0$ has a root α in the interval $x=2$ and $x=2.5$.

Solution

$\mathrm{f}(2)=-1$
$\mathrm{f}(2.5)=3.40625$

It is a continuous function and there is a change of sign.
Hence $2<\alpha<2.5$.
(b) Starting with the interval [2, 2.5], use interval bisection twice to find an interval of width 0.125 which contains α.

Solution

x	$\mathrm{f}(x)$
2	-1
2.25	0.673
2.5	3.406

and it is [2, 2.25];

x	$\mathrm{f}(x)$
2	-1
2.125	-0.275
2.25	0.673

and it is [2.125, 2.25].

The equation $\mathrm{f}(x)=0$ has a root β in the interval $[-2,-1]$.
(c) Taking -1.5 as a first approximation to β, apply the Newton-Raphson process once to $\mathrm{f}(x)$ to find a second approximation to β. Give your answer to 2 decimal places.

Solution

$$
\begin{aligned}
\mathrm{f}(x) & =\frac{1}{2} x^{4}-x^{3}+x-3 \Rightarrow \mathrm{f}(-1.5)=\frac{45}{32} \\
\mathrm{f}^{\prime}(x) & =2 x^{3}-3 x^{2}+1 \Rightarrow \mathrm{f}^{\prime}(-1.5)=-\frac{25}{2}
\end{aligned}
$$

and

$$
\begin{aligned}
x_{2} & =-1.5-\frac{\mathrm{f}(-1.5)}{\mathrm{f}^{\prime}(-1.5)} \\
& =-1.3875(\mathrm{FCD}) \\
& =-1.39(2 \mathrm{dp}) .
\end{aligned}
$$

24.

$$
\begin{equation*}
\mathrm{f}(x)=x^{3}-\frac{5}{2 x^{\frac{3}{2}}}+2 x-3, x>0 \tag{2}
\end{equation*}
$$

(a) Show that $\mathrm{f}(x)=0$ has a root α in the interval $[1.1,1.5]$.

Solution

$\mathrm{f}(1.1)=-1.63596043$ (FCD)
$\mathrm{f}(1.5)=2.0141723(\mathrm{FCD})$
It is a continuous function and there is a change of sign.
Hence $\underline{\underline{1.1<\alpha<1.5}}$.
(b) Find $\mathrm{f}^{\prime}(x)$.

Solution

$$
\begin{aligned}
\mathrm{f}(x)=x^{3}-\frac{5}{2 x^{\frac{3}{2}}}+2 x-3 & \Rightarrow \mathrm{f}(x)=x^{3}-\frac{5}{2} x^{-\frac{3}{2}}+2 x-3 \\
& \Rightarrow \underline{\underline{\mathrm{f}^{\prime}(x)}=3 x^{2}+\frac{15}{4} x^{-\frac{5}{2}}+2 .}
\end{aligned}
$$

(c) Using $x_{0}=1.1$ as a first approximation to α, apply the Newton-Raphson process once to $\mathrm{f}(x)$ to find a second approximation to α, giving your answer to 3 decimal places.

Solution

$$
\mathrm{f}^{\prime}(1.1)=8.584946041(\mathrm{FCD})
$$

and

$$
\begin{aligned}
x_{1} & =1.1-\frac{\mathrm{f}(1.1)}{\mathrm{f}^{\prime}(1.1)} \\
& =1.290561527(\mathrm{FCD}) \\
& =\underline{\underline{1} .291(3 \mathrm{dp}) .}
\end{aligned}
$$

25.

$$
\mathrm{f}(x)=3 \cos 2 x+x-2,-\pi \leqslant x \leqslant \pi .
$$

(a) Show that $\mathrm{f}(x)=0$ has a root α in the interval $[2,3]$.

Solution

$\mathrm{f}(2)=-1.960930863$ (FCD)
$\mathrm{f}(3)=3.88051086$ (FCD)
It is a continuous function and there is a change of sign.
Hence $\underline{\underline{2<\alpha<3}}$.
(b) Use linear interpolation once on the interval $[2,3]$ to find to approximation to α.

Give your answer to 3 decimal places.

Solution

$$
\begin{aligned}
\alpha & =\frac{2|\mathrm{f}(3)|+3|\mathrm{f}(2)|}{|\mathrm{f}(2)|+|\mathrm{f}(3)|} \\
& =2.33569296(\mathrm{FCD}) \\
& =\underline{\underline{2.336(3 \mathrm{dp})} .} .
\end{aligned}
$$

(c) The equation $\mathrm{f}(x)=0$ has a root β in the interval $[-1,-0]$. Starting with the interval $[-1,0]$, use interval bisection to find an interval of width 0.25 which contains β.

Solution

x	$\mathrm{f}(x)$
-1	-4.248
-0.5	-0.879
0	1

and it is $[-0.5,0]$;

x	$\mathrm{f}(x)$
-0.5	-0.879
-0.25	0.3827
0	1

and it is $\underline{\underline{[-0.5,-0.25]}}$.
26. In the interval $13<x<14$, the equation

$$
3+x \sin \left(\frac{x}{4}\right)=0,
$$

where x is measured in radians, has exactly one root.
(a) Starting with the interval $[13,14]$, use interval bisection twice to find an interval of
width 0.25 which contains α.

Solution

x	$\mathrm{f}(x)$
13	1.5934
13.5	-0.122
14	-1.009

and it is $[13,13.5]$;

x	$\mathrm{f}(x)$
13	1.5934
13.25	0.7464
13.5	-0.122

and it is [13.25, 13.5].
(b) Use linear interpolation once on the interval $[2,3]$ to find to approximation to α. Give your answer to 3 decimal places.

Solution

$\mathrm{f}(13)=1.593463251(\mathrm{FCD})$
$\mathrm{f}(14)=-1.910965188(\mathrm{FCD})$

$$
\begin{aligned}
\alpha & =\frac{13|\mathrm{f}(14)|+14|\mathrm{f}(13)|}{|\mathrm{f}(13)|+|\mathrm{f}(14)|} \\
& =13.4546999(\mathrm{FCD}) \\
& =\underline{\underline{13.455(3 \mathrm{dp})} .}
\end{aligned}
$$

27.

$$
\begin{equation*}
\mathrm{f}(x)=3 x^{\frac{3}{2}}-25 x^{-\frac{1}{2}}-125, x>0 \tag{2}
\end{equation*}
$$

(a) Find $\mathrm{f}^{\prime}(x)$.

Solution

$$
\mathrm{f}(x)=3 x^{\frac{3}{2}}-25 x^{-\frac{1}{2}}-125 \Rightarrow \underline{\underline{\mathrm{f}^{\prime}}(x)=\frac{9}{2} x^{\frac{1}{2}}+\frac{25}{2} x^{-\frac{3}{2}}} .
$$

The equation $\mathrm{f}(x)=0$ has a root α in the interval $[12,13]$.
(b) Using $x_{0}=12.5$ as a first approximation to α, apply the Newton-Raphson process once to $\mathrm{f}(x)$ to find a second approximation to α, giving your answer to 3 decimal places.

Solution

$$
\mathrm{f}(12.5)=0.5114536606(\mathrm{FCD}) \text { and } \mathrm{f}^{\prime}(12.5)=16.19274529(\mathrm{FCD})
$$

and

$$
\begin{aligned}
x_{1} & =12.5-\frac{\mathrm{f}(12.5)}{\mathrm{f}^{\prime}(12.5)} \\
& =12.46841464(\mathrm{FCD}) \\
& =\underline{\underline{12.468(3 \mathrm{dp})} .}
\end{aligned}
$$

28.

$$
\begin{equation*}
f(x)=\frac{1}{3} x^{2}+\frac{4}{x^{2}}-2 x-1, x>0 \tag{2}
\end{equation*}
$$

(a) Show that the equation $\mathrm{f}(x)=0$ has a root α in the interval $[6,7]$.

Solution

$f(6)=-\frac{8}{9}$
$f(7)=208$
$\mathrm{f}(7)=\frac{208}{147}$
It is a continuous function and there is a change of sign.
Hence $\underline{\underline{6<\alpha<7}}$.
(b) Taking 6 as a first approximation to α, apply the Newton-Raphson process once to $\mathrm{f}(x)$ to obtain a second approximation to α. Give your answer to 2 decimal places.

Solution

$$
\begin{aligned}
\mathrm{f}(x)=\frac{1}{3} x^{2}+\frac{4}{x^{2}}-2 x-1 & \Rightarrow \mathrm{f}(x)=\frac{1}{3} x^{2}+4 x^{-2}-2 x-1 \\
& \Rightarrow \mathrm{f}^{\prime}(x)=\frac{2}{3} x-8 x^{-3}-2
\end{aligned}
$$

and

$$
\begin{aligned}
x_{1} & =6-\frac{\mathrm{f}(6)}{\mathrm{f}^{\prime}(6)} \\
& =6.452830189(\mathrm{FCD}) \\
& =\underline{\underline{6.45(2 \mathrm{dp}) .}}
\end{aligned}
$$

