Dr Oliver Mathematics Mathematics: Advanced Higher 2009 Paper 3 hours

The total number of marks available is 100. You must write down all the stages in your working.

1. (a) Given $f(x) = (x+1)(x-2)^3$,

obtain the values of x for which f'(x) = 0

Solution

We use the product rule:

$$u = x + 1 \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = 1$$
$$v = (x - 2)^3 \Rightarrow \frac{\mathrm{d}v}{\mathrm{d}x} = 3(x - 2)^2$$

(3)

(4)

Now,

$$f'(x) = (x+1) \cdot 3(x-2)^2 + 1 \cdot (x-2)^3$$

= $(x-2)^2 [3(x+1) + (x-2)]$
= $(4x+1)(x-2)^2$.

Finally,

$$f'(x) = 0 \Rightarrow (4x + 1)(x - 2)^2 = 0$$

 $\Rightarrow \underline{x = -\frac{1}{4} \text{ or } x = 2}.$

(b) Calculate the gradient of the curve defined by

$$\frac{x^2}{y} + x = y - 5$$

at the point (3, -1).

We use the product rule and implicit differentation:

$$x^{2}y^{-1} + x = y - 5 \Rightarrow \frac{\mathrm{d}}{\mathrm{d}x}(x^{2}y^{-1} + x) = \frac{\mathrm{d}}{\mathrm{d}x}(y - 5)$$

$$\Rightarrow 2x \cdot y^{-1} + x^{2} \cdot \left(-y^{-2}\frac{\mathrm{d}y}{\mathrm{d}x}\right) + 1 = \frac{\mathrm{d}y}{\mathrm{d}x}$$

$$\Rightarrow 2xy^{-1} + 1 - x^{2}y^{-2}\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}x}$$

$$\Rightarrow 2xy^{-1} + 1 = \frac{\mathrm{d}y}{\mathrm{d}x} + x^{2}y^{-2}\frac{\mathrm{d}y}{\mathrm{d}x}$$

$$\Rightarrow 2xy^{-1} + 1 = \frac{\mathrm{d}y}{\mathrm{d}x}(1 + x^{2}y^{-2})$$

$$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2xy^{-1} + 1}{1 + x^{2}y^{-2}}.$$

Finally, at (3, -1),

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2 \cdot 3 \cdot -1}{1 + 3^2 \cdot (-1)^{-2}} = \frac{1}{2}.$$

2. Given the matrix

$$\mathbf{A} = \left(\begin{array}{cc} t+4 & 3t \\ 3 & 5 \end{array} \right),$$

(a) find \mathbf{A}^{-1} in terms of t when \mathbf{A} is non-singular.

Solution

$$\det \mathbf{A} = 5(t+4) - 3(3t)$$

$$= (5t+20) - 9t$$

$$= 20 - 4t.$$

(3)

(1)

Finally,

$$\mathbf{A}^{-1} = \frac{1}{20 - 4t} \begin{pmatrix} 5 & -3t \\ -3 & t + 4 \end{pmatrix}.$$

(b) Write down the value of t such that **A** is singular.

$$20 - 4t = 0 \Rightarrow \underline{t = 5}.$$

(c) Given that the transpose of \mathbf{A} is

spose of
$$\mathbf{A}$$
 is
$$\begin{pmatrix} 6 & 3 \\ 6 & 5 \end{pmatrix}, \tag{1}$$

find t.

Solution

$$t + 4 = 6 \Rightarrow \underline{t = 2}.$$

3. Given that

$$x^2 e^y \frac{\mathrm{d}y}{\mathrm{d}x} = 1,\tag{4}$$

(5)

and y = 0 when x = 1, find y in terms of x.

Solution

$$x^{2}e^{y}\frac{dy}{dx} = 1 \Rightarrow e^{y} dy = x^{-2} dx$$
$$\Rightarrow \int e^{y} dy = \int x^{-2} dx$$
$$\Rightarrow e^{y} = -x^{-1} + c.$$

Now, y = 0 when x = 1:

$$1 = -1 + c \Rightarrow c = 2$$

and so

$$e^{y} = -x^{-1} + 2 \Rightarrow e^{y} = -\frac{1}{x} + 2$$

$$\Rightarrow e^{y} = \frac{2x - 1}{x}$$

$$\Rightarrow y = \ln\left(\frac{2x - 1}{x}\right).$$

4. Prove by induction that, for all positive integers n,

$$\sum_{r=1}^{n} \frac{1}{r(r+1)} = 1 - \frac{1}{n+1}.$$

Solution

 $\underline{n=1}$: LHS = $\frac{1}{1\times 2}$ = $\frac{1}{2}$ and RHS = $1-\frac{1}{1+1}=\frac{1}{2}$ and so the solution is true for n=1. Suppose the solution is true for n=k, i.e.,

$$\sum_{r=1}^{k} \frac{1}{r(r+1)} = 1 - \frac{1}{k+1}.$$

Then,

$$\sum_{r=1}^{k+1} \frac{1}{r(r+1)} = \sum_{r=1}^{k} \frac{1}{r(r+1)} + \frac{1}{(k+1)(k+2)}$$

$$= 1 - \frac{1}{k+1} + \frac{1}{(k+1)(k+2)}$$

$$= 1 + \frac{1 - (k+2)}{(k+1)(k+2)}$$

$$= 1 + \frac{-(k+1)}{(k+1)(k+2)}$$

$$= 1 - \frac{1}{k+2}$$

and so the result is true for n = k + 1.

Hence, by mathematical induction, the expression is true for all $n \in \mathbb{Z}^+$, as required.

5. Show that

$$\int_{\ln \frac{3}{2}}^{\ln 2} \frac{e^x + e^{-x}}{e^x - e^{-x}} dx = \ln \left(\frac{9}{5}\right).$$
 (4)

Solution

Notice how the bottom line is the derivative of the top line:

$$\int_{\ln \frac{3}{2}}^{\ln 2} \frac{e^x + e^{-x}}{e^x - e^{-x}} dx = \left[\ln(e^x - e^{-x}) \right]_{x=\ln \frac{3}{2}}^{\ln 2}$$

$$= \ln(2 - \frac{1}{2}) - \ln(\frac{3}{2} - \frac{2}{3})$$

$$= \ln(\frac{3}{2}) - \ln(\frac{5}{6})$$

$$= \ln\left(\frac{9}{5}\right),$$

as required

6. (a) Express

$$z = \frac{(1+2i)^2}{7-i} \tag{3}$$

(3)

in the form a + ib where a and b are real numbers.

Solution

$$z = \frac{(1+2i)^2}{7-i}$$

$$= \frac{1+4i+4i^2}{7-i}$$

$$= \frac{-3+4i}{7-i}$$

$$= \frac{-3+4i}{7-i} \times \frac{7+i}{7+i}$$

$$= \frac{-21-3i+28i+4i^2}{49+1}$$

$$= \frac{-25+25i}{50}$$

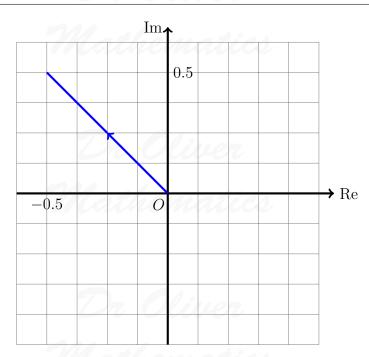
$$= \frac{-\frac{1}{2} + \frac{1}{2}i}{5}$$

(b) Show z on an Argand diagram and evaluate |z| and $\arg(z)$.

Solution

Dr Oliver Mathematics

De Oliver Maihemaiics 5



$$|z| = \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2}$$

$$= \sqrt{\frac{1}{2}}$$

$$= \frac{\sqrt{2}}{2}$$

and

$$\arg(z) = \tan^{-1} \frac{\frac{1}{2}}{-\frac{1}{2}}$$

$$= \tan^{-1}(-1)$$

$$= -\frac{1}{4}\pi \text{ (no)}, \frac{3}{4}\pi \text{ (yes)}.$$

(6)

7. Use the substitution $x = 2\sin\theta$ to obtain the exact value of

$$\int_0^{\sqrt{2}} \frac{x^2}{\sqrt{4-x^2}} \, \mathrm{d}x.$$

Mathematics

Solution

Would it be better if we had

$$x = 2\sin\theta \Rightarrow \theta = \sin^{-1}\left(\frac{x}{2}\right)$$
?

(Just saying...) Now,

$$x = 2\sin\theta \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}\theta} = 2\cos\theta$$
$$\Rightarrow \mathrm{d}x = 2\cos\theta\,\mathrm{d}\theta$$

and

$$x = 0 \Rightarrow \theta = 0,$$

$$x = \sqrt{2} \Rightarrow \theta = \frac{1}{4}\pi.$$

Finally,

$$\int_{0}^{\sqrt{2}} \frac{x^{2}}{\sqrt{4 - x^{2}}} dx \Rightarrow \int_{0}^{\frac{1}{4}\pi} \frac{(2\sin\theta)^{2}}{\sqrt{4 - (2\sin\theta)^{2}}} 2\cos\theta d\theta$$

$$\Rightarrow \int_{0}^{\frac{1}{4}\pi} \frac{8\sin^{2}\theta\cos\theta}{\sqrt{4\cos^{2}\theta}} d\theta$$

$$\Rightarrow \int_{0}^{\frac{1}{4}\pi} \frac{8\sin^{2}\theta\cos\theta}{\sqrt{4\cos^{2}\theta}} d\theta$$

$$\Rightarrow \int_{0}^{\frac{1}{4}\pi} \frac{8\sin^{2}\theta\cos\theta}{2\cos\theta} d\theta$$

$$\Rightarrow \int_{0}^{\frac{1}{4}\pi} 4\sin^{2}\theta d\theta$$

$$\Rightarrow \int_{0}^{\frac{1}{4}\pi} 2 \cdot 2\sin^{2}\theta d\theta$$

$$\Rightarrow 2\int_{0}^{\frac{1}{4}\pi} (1 - \cos 2\theta) d\theta$$

$$\Rightarrow 2\left[\theta - \frac{1}{2}\sin 2\theta\right]_{x=0}^{\frac{1}{4}\pi}$$

$$\Rightarrow 2\left\{\left(\frac{1}{4}\pi - \frac{1}{2}\right) - (0 - 0)\right\}$$

$$\Rightarrow \frac{1}{2}\pi - 1.$$

8. (a) Write down the binomial expansion of $(1+x)^5$.

(1)

Solution

$$(1+x)^5 = 1 + {5 \choose 1}x + {5 \choose 2}x^2 + {5 \choose 3}x^3 + {5 \choose 4}x^4 + x^5$$
$$= \underline{1+5x+10x^2+10x^3+5x^4+x^5}.$$

(b) Hence show that $(0.9)^5$ is 0.59049.

(2)

Solution

$$(0.9)^5 = [1 + (-0.1)]^5$$

$$= 1 + 5(-0.1) + 10(-0.1)^2 + 10(-0.1)^3 + 5(-0.1)^4 + (-0.1)^5$$

$$= 1 - 0.5 + 0.1 - 0.01 + 0.0005 - 0.00001$$

$$= 0.59049,$$

as required.

9. Use integration by parts to obtain the exact value of

(5)

$$\int_0^1 x \tan^{-1} x^2 \, \mathrm{d}x.$$

$$u = \tan^{-1} x^2 \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{2x}{1 + (x^2)^2}$$
$$\frac{\mathrm{d}v}{\mathrm{d}x} = x \Rightarrow v = \frac{1}{2}x^2.$$

Finally,

$$\int_0^1 x \tan^{-1} x^2 dx = \left[\frac{1}{2}x^2 \tan^{-1} x^2\right]_{x=0}^1 - \int_0^1 \frac{2x^3}{2(1+x^4)} dx$$

$$= \left(\frac{1}{2} \tan^{-1} 1 - 0\right) - \frac{1}{4} \int_0^1 \frac{4x^3}{1+x^4} dx$$

$$= \frac{1}{8}\pi - \frac{1}{4} \left[\ln|1+x^4|\right]_{x=0}^1$$

$$= \frac{1}{8}\pi - \frac{1}{4} (\ln 2 - 0)$$

$$= \frac{1}{8}\pi - \frac{1}{4} \ln 2.$$

10. Use the Euclidean algorithm to obtain the greatest common divisor of 1 326 and 14 654, expressing it in the form

$$1\,326a + 14\,654b$$
,

where a and b are integers.

Solution

$$14654 = 1326 \times 11 + 68$$
$$1326 = 68 \times 19 + 34$$
$$68 = 34 \times 2 + 0$$

and

$$34 = 1326 - 68 \times 19$$

$$= 1326 - 19(14654 - 1326 \times 11)$$

$$= 1326 - 14654 \times 19 + 1326 \times 209$$

$$= 1326 \times 210 - 14654 \times 19.$$

11. The curve

$$y = x^{2x^2 + 1} \tag{5}$$

is defined for x > 0.

Obtain the values of y and $\frac{dy}{dx}$ at the point where x = 1.

Solution

 $x = 1 \Rightarrow \underline{y} = \underline{1}.$

Now,

$$y = x^{2x^2+1} \Rightarrow \ln y = \ln x^{2x^2+1}$$

$$\Rightarrow \ln y = (2x^2+1)\ln x$$

$$\Rightarrow \frac{1}{y}\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2x^2+1}{x} + 4x\ln x$$

$$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = (x^{2x^2+1})\left(\frac{2x^2+1}{x} + 4x\ln x\right),$$

and

$$x = 1 \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 3.$$

12. (a) The first two terms of a geometric sequence are $a_1 = p$ and $a_2 = p^2$. Obtain expressions for S_n and S_{2n} in terms of p, where

$$S_k = \sum_{j=1}^k a_j.$$

Solution

a = p and r = p:

$$S_n = \sum_{j=1}^n a_j$$

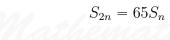
$$= p + p^2 + \dots p^n$$

$$= \frac{p - p^{n+1}}{1 - p}$$

and

$$S_{2n} = \frac{p - p^{2n+1}}{1 - p}.$$

(b) Given that



(2)

show that $p^n = 64$.

Solution

$$S_{2n} = 65S_n \Rightarrow \frac{p - p^{2n+1}}{1 - p} = \frac{65(p - p^{n+1})}{1 - p}$$

$$\Rightarrow p - p^{2n+1} = 65(p - p^{n+1})$$

$$\Rightarrow p(1 - p^{2n}) = 65p(1 - p^n)$$

$$\Rightarrow (1 - p^n)(1 + p^n) = 65(1 - p^n) \text{ (as } p > 0)$$

$$\Rightarrow 1 + p^n = 65$$

$$\Rightarrow p^n = 64,$$

as required.

(c) Given also that $a_3 = 2p$ and that p > 0, obtain the exact value of p and hence the value of p.

Solution

$$\frac{p^2}{p} = \frac{2p}{p^2} \Rightarrow p^4 = 2p^2$$
$$\Rightarrow p^4 - 2p^2 = 0$$
$$\Rightarrow p^2(p^2 - 2) = 0$$

and, as p > 0, $\underline{\underline{p} = \sqrt{2}}$. Finally,

$$\sqrt{2}^n = 64 \Rightarrow 2^{\frac{1}{2}n} = 2^6$$
$$\Rightarrow \frac{1}{2}n = 6$$
$$\Rightarrow \underline{n = 12}.$$

13. The function f(x) is defined by

$$f(x) = \frac{x^2 + 2x}{x^2 - 1}, \ x \neq \pm 1.$$

(3)

(a) Obtain equations for the asymptotes of the graph of f(x).

Horizontally:

$$f(x) = \frac{x^2 + 2x}{x^2 - 1}$$

$$= \frac{1 + \frac{2}{x}}{1 - \frac{1}{x^2}}$$

$$\to \frac{1 + 0}{1 - 0}$$

$$= 1 \text{ as } x \to \infty$$

and the asymptote is at y = 1.

Vertically: the denominator is zero:

$$x^2 - 1 = 0 \Rightarrow \underline{x = \pm 1}.$$

(b) Show that f(x) is a strictly decreasing function.

Solution

We use the quotient rule:

$$f'(x) = \frac{(x^2 - 1) \cdot (2x + 2) - (x^2 + 2x) \cdot (2x)}{(x^2 - 1)^2}$$

$$= \frac{(2x^3 + 2x^2 - 2x - 2) - (2x^3 + 4x^2)}{(x^2 - 1)^2}$$

$$= \frac{-2x^2 - 2x - 2}{(x^2 - 1)^2}$$

$$= -\frac{2(x^2 + x + 1)}{(x^2 - 1)^2}$$

$$= -\frac{2[(x + \frac{1}{2})^2 + \frac{3}{4}]}{(x^2 - 1)^2}$$

$$< 0,$$

and, hence, f(x) is a strictly decreasing function.

- (c) Find the coordinates of the points where the graph of f(x) crosses
 - (i) the x-axis, and

(1)

(3)

Solution

$$y = 0 \Rightarrow x^{2} + 2x = 0$$
$$\Rightarrow x(x+2) = 0$$
$$\Rightarrow x = -2 \text{ or } x = 0,$$

and hence the points are (-2,0) and (0,0).

(ii) the horizontal asymptote.

(1)

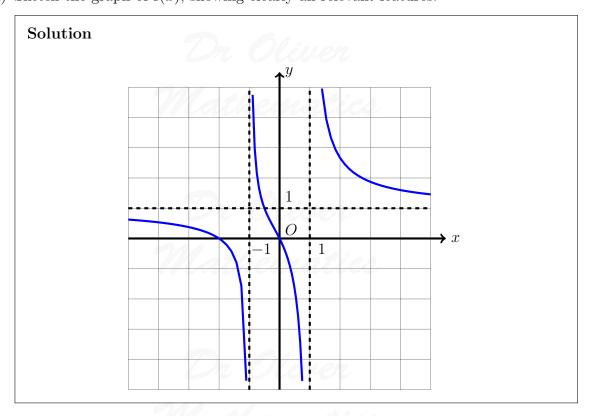
Solution

$$\frac{x^2 + 2x}{x^2 - 1} = 1 \Rightarrow x^2 + 2x = x^2 - 1$$
$$\Rightarrow 2x = -1$$
$$\Rightarrow x = -\frac{1}{2},$$

and hence the point is $(-\frac{1}{2}, 1)$.

(d) Sketch the graph of f(x), showing clearly all relevant features.

(2)



14. (a) Express

 $\frac{x^2 + 6x - 4}{(x+2)^2(x-4)}\tag{4}$

(5)

in partial fractions.

Solution

$$\frac{x^2 + 6x - 4}{(x+2)^2(x-4)} \equiv \frac{A}{x+2} + \frac{B}{(x+2)^2} + \frac{C}{x-4}$$
$$\equiv \frac{A(x+2)(x-4) + B(x-4) + C(x+2)^2}{(x+2)^2(x-4)}$$

and so

$$x^{2} + 6x - 4 \equiv A(x+2)(x-4) + B(x-4) + C(x+2)^{2}.$$

$$\underline{x = -2}$$
: $-12 = -6B \Rightarrow B = 2$.

$$x = 4$$
: $36 = 36C \Rightarrow C = 1$.

$$\overline{x=0}$$
: $-4 = -8A - 4B + 4C \Rightarrow -8A = 0 \Rightarrow A = 0$.

Hence,

$$\frac{x^2 + 6x - 4}{(x+2)^2(x-4)} \equiv \frac{2}{(x+2)^2} + \frac{1}{x-4}.$$

(b) Hence, or otherwise, obtain the first three non-zero terms in the Maclaurin expansion of

$$\frac{x^2 + 6x - 4}{(x+2)^2(x-4)}.$$

Solution

Let

$$f(x) = 2(x+2)^{-2} + (x-4)^{-1}$$

$$f(0) = \frac{1}{4}$$

$$f'(x) = -4(x+2)^{-3} - (x-4)^{-2}$$

$$f'(0) = -\frac{9}{16}$$

$$f''(x) = 12(x+2)^{-4} + 2(x-4)^{-3}$$

$$f''(0) = \frac{23}{32}.$$

Hence, the first three non-zero terms in the Maclaurin expansion are

$$\frac{1}{4} - \frac{9}{16}x + \frac{23}{64}x^2 + \dots$$

15. (a) Solve the differential equation

$$(x+1)\frac{\mathrm{d}y}{\mathrm{d}x} - 3y = (x+1)^4,$$

(6)

given that y = 16 when x = 1, expressing the answer in the form y = f(x).

Solution

$$(x+1)\frac{\mathrm{d}y}{\mathrm{d}x} - 3y = (x+1)^4$$

$$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} + \left(-\frac{3}{x+1}\right)y = (x+1)^3.$$

Now,

IF =
$$e^{\int \left(-\frac{3}{x+1}\right) dx}$$

= $e^{-3\ln(x+1)}$
= $e^{\ln(x+1)^{-3}}$
= $(x+1)^{-3}$

and so the differential equation is

$$\frac{dy}{dx} + \left(-\frac{3}{x+1}\right)y = (x+1)^3$$

$$\Rightarrow (x+1)^{-3}\frac{dy}{dx} - 3(x+1)^{-4} = 1$$

$$\Rightarrow \frac{d}{dx}\left[y(x+1)^{-3}\right] = 1$$

$$\Rightarrow y(x+1)^{-3} = x + c$$

$$\Rightarrow y = (x+c)(x+1)^3.$$

Next, y = 16 when x = 1 so

$$16 = (1+c) \times 2^3 \Rightarrow c = 1$$

and so the solution is

$$\underline{y = (x+1)^4}.$$

(b) Hence, find the area enclosed by the graphs of y = f(x), $y = (1 - x)^4$, and the (4)x-axis.

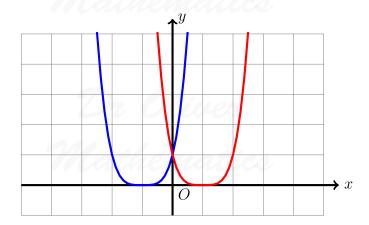
Solution

Where do the two graphs cross?

$$(x+1)^4 = (1-x)^4 \Rightarrow x+1 = 1-x \text{ or } x+1 = -(1-x)$$

 $\Rightarrow x = 0 \text{ or } 0 = 2 \text{ (no solutions!)}.$

Next, a picture:



Finally,

area =
$$\int_{-1}^{0} (x+1)^4 dx + \int_{0}^{1} (1-x)^4 dx$$
=
$$\left[\frac{1}{5}(x+1)^5\right]_{x=-1}^{0} + \left[-\frac{1}{5}(1-x)^5\right]_{x=0}^{1}$$
=
$$\left(\frac{1}{5}-0\right) + \left(0+\frac{1}{5}\right)$$
=
$$\frac{2}{5}$$
.

16. (a) Use Gaussian elimination to solve the following system of equations:

$$x + y - z = 6$$
$$2x - 3y + 2z = 2$$

$$2x - 3y + 2z = 2$$

$$-5x + 2y - 4z = 1.$$

Solution

$$\left(\begin{array}{ccc|c}
1 & 1 & -1 & 6 \\
2 & -3 & 2 & 2 \\
-5 & 2 & -4 & 1
\end{array}\right)$$

Do $R_2 - 2R_1$ and $R_3 + 5R_1$:

$$\left(\begin{array}{ccc|c}
1 & 1 & -1 & 6 \\
0 & -5 & 4 & -10 \\
0 & 7 & -9 & 31
\end{array}\right)$$

Do $R_3 + \frac{7}{5}R_2$:

$$\left(\begin{array}{ccc|c}
1 & 1 & -1 & 6 \\
0 & -5 & 4 & -10 \\
0 & 0 & -\frac{17}{5} & 17
\end{array}\right)$$

Finally,

$$-\frac{17}{5}z = 17 \Rightarrow z = -5$$
$$-5y - 20 = -10 \Rightarrow y = -2$$
$$x - 2 + 5 = 6 \Rightarrow x = 3;$$

hence,

$$x = 3, y = -2, z = -5.$$

(b) Show that the line of intersection, L, of the planes x+y-z=6 and 2x-3y+2z=2 (2) has parametric equations

$$x = \lambda$$
$$y = 4\lambda - 14$$
$$z = 5\lambda - 20.$$

Solution

$$\underline{x+y-z=6}$$
:

$$\lambda + (4\lambda - 14) - (5\lambda - 20) = 6$$
 \checkmark

$$2x - 3y + 2z = 2$$
:

$$2\lambda - 3(4\lambda - 14) + 2(5\lambda - 20) = 2$$
 \checkmark

So, the line does have the parametric equations.

(c) Find the acute angle between line L and the plane -5x + 2y - 4z = 1.

Solution

Now, re-cast the parametric equations into a straight line:

$$\frac{x}{1} = \frac{y+14}{4} = \frac{z+20}{5}$$

(4)

and the direction of L is $\mathbf{i} + 4\mathbf{j} + 5\mathbf{k}$. Next,

$$\sin \theta = \frac{|(\mathbf{i} + 4\mathbf{j} + 5\mathbf{k}) \cdot (-5\mathbf{i} + 2\mathbf{j} - 4\mathbf{k})|}{\sqrt{1^2 + 4^2 + 5^2} \cdot \sqrt{5^2 + 2^2 + 4^2}}$$

$$\Rightarrow \sin \theta = \frac{|-5 + 8 - 20|}{\sqrt{42} \cdot \sqrt{45}}$$

$$\Rightarrow \sin \theta = \frac{17}{\sqrt{42} \cdot \sqrt{45}}$$

$$\Rightarrow \theta = 23.019\,049\,32 \text{ (FCD)}$$

$$\Rightarrow \theta = 23.0^{\circ} (1 \text{ dp}).$$

Dr Oliver Mathematics

Dr Oliver Mathematics

Dr Oliver Mathematics