Dr Oliver Mathematics Further Mathematics Rational Inequalities Past Examination Questions

This booklet consists of 20 questions across a variety of examination topics. The total number of marks available is 162 .

1. (a) Sketch the graph of $y=|x-2 a|$, given that $a>0$.
(b) Solve $|x-2 a|>2 x+a$, where $a>0$.
2. (a) On the same diagram, sketch the curve with equation $y=\left|x^{2}-4\right|$ and the line with equation $y=|2 x-1|$, showing the coordinates of the points where the curve meets the axes.
(b) Solve $\left|x^{2}-4\right|=|2 x-1|$, giving your answer in surd form as appropriate.
(c) Hence, or otherwise, find the set of values of x for which $\left|x^{2}-4\right|>|2 x-1|$.
3. (a) Use algebra to find the exact solutions of the equation

$$
\begin{equation*}
\left|2 x^{2}+x-6\right|=6-3 x . \tag{6}
\end{equation*}
$$

(b) On the same diagram, sketch the curve with equation $y=\left|2 x^{2}+x-6\right|$ and the line with equation $y=6-3 x$.
(c) Find the set of values of x for which

$$
\begin{equation*}
\left|2 x^{2}+x-6\right|>6-3 x . \tag{3}
\end{equation*}
$$

4. Figure 1 shows a sketch of the curve with equation

$$
y=\frac{x^{2}-1}{|x+2|}, x \neq-2
$$

Figure 1: $y=\frac{x^{2}-1}{|x+2|}$

The curve crosses the x-axis at $x=1$ and $x=-1$ and the line $x=-2$ is an asymptote of the curve.
(a) Use algebra to solve the equation

$$
\begin{equation*}
\frac{x^{2}-1}{|x+2|}=3(1-x) \tag{6}
\end{equation*}
$$

(b) Hence, or otherwise, find the set of values of x for which

$$
\begin{equation*}
\frac{x^{2}-1}{|x+2|}<3(1-x) \tag{3}
\end{equation*}
$$

5. Find the set of values of x for which

$$
\begin{equation*}
\frac{x+1}{2 x-3}<\frac{1}{x-3} \tag{7}
\end{equation*}
$$

6. (a) Simplify the expression

$$
\frac{(x+3)(x+9)}{x-1}-(3 x-5)
$$

giving your answer in the form

$$
\frac{a(x+b)(x+c)}{x-1}
$$

where a, b, c are integers.
(b) Hence, or otherwise, solve the inequality

$$
\begin{equation*}
\frac{(x+3)(x+9)}{x-1}>(3 x-5) . \tag{4}
\end{equation*}
$$

7. (a) Find, in the simplest surd form where appropriate, the exact values of x for which

$$
\begin{equation*}
\frac{x}{2}+3=\left|\frac{4}{x}\right| \tag{5}
\end{equation*}
$$

(b) Sketch, on the same axes, the line with equation $y=\frac{x}{2}+3$ and the graph of $y=\left|\frac{4}{x}\right|$, $x \neq 0$.
(c) Find the set of values of x for which

$$
\begin{equation*}
\frac{x}{2}+3>\left|\frac{4}{x}\right| . \tag{2}
\end{equation*}
$$

8. Find the set of values of x for which

$$
\begin{equation*}
\frac{x^{3}+5 x-12}{x-3}>4 \tag{6}
\end{equation*}
$$

9. (a) On the same diagram, sketch the graph of $y=x+2$ and the graph of $y=\left|\frac{1}{x-2}\right|$.

Indicate on your sketch the coordinates of any points at which the graphs cross the axes, and state the equations of any asymptotes.
(b) Find the set of values of x for which

$$
\begin{equation*}
x+2<\left|\frac{1}{x-2}\right| . \tag{6}
\end{equation*}
$$

10. Figure 2 shows the graph of $y=10+3 x-x^{2}$ and the graph of $y=|3 x-1|$.

Figure 2: $y=10+3 x-x^{2}$ and $y=|3 x-1|$

The graphs intersect at the points A and B.
(a) Use algebra to find the exact x-coordinates of A and B.
(b) Find the set of values of x for which

$$
\begin{equation*}
10+3 x-x^{2}>|3 x-1| \tag{2}
\end{equation*}
$$

(c) Find the set of values of x for which $\left|10+3 x-x^{2}\right|<|3 x-1|$.
11. (a) Find the set of values of x for which

$$
\begin{equation*}
x+4>\frac{2}{x+3} . \tag{6}
\end{equation*}
$$

(b) Deduce, or otherwise find, the set of values of x for which

$$
\begin{equation*}
x+4>\frac{2}{|x+3|} \tag{1}
\end{equation*}
$$

12. Find the set of values of x for which

$$
\begin{equation*}
\frac{3}{x+3}>\frac{x-4}{x} \tag{7}
\end{equation*}
$$

13. Find the set of values of x for which

$$
\begin{equation*}
\left|x^{2}-4\right|>3 x . \tag{5}
\end{equation*}
$$

14. Use algebra to find the set of values for which

$$
\begin{equation*}
\frac{6 x}{3-x}>\frac{1}{x+1} . \tag{7}
\end{equation*}
$$

15. (a) Use algebra to find the exact solutions of the equation

$$
\begin{equation*}
\left|2 x^{2}+6 x-5\right|=5-2 x \tag{6}
\end{equation*}
$$

(b) On the same diagram, sketch the curve with equation $y=\left|2 x^{2}+6 x-5\right|$ and the line with equation $y=5-2 x$, showing the x-coordinate of the points where the line crosses the curve.
(c) Find the set of values of x for which

$$
\begin{equation*}
\left|2 x^{2}+6 x-5\right|>5-2 x \tag{3}
\end{equation*}
$$

16. Using algebra, find the set of values of x for which

$$
\begin{equation*}
3 x-5<\frac{2}{x} \tag{5}
\end{equation*}
$$

17. Use algebra to find the set of values of x for which

$$
\begin{equation*}
\left|3 x^{2}-19 x+20\right|<2 x+2 \tag{6}
\end{equation*}
$$

18. (a) Use algebra to find the set of values of x for which

$$
\begin{equation*}
x+2>\frac{12}{x+3} \tag{6}
\end{equation*}
$$

\qquad
(b) Hence, or otherwise, find the set of values of x for which

$$
\begin{equation*}
x+2>\frac{12}{|x+3|} \tag{1}
\end{equation*}
$$

19. Use algebra to find the set of values of x for which

$$
\begin{equation*}
\frac{x}{x+1}<\frac{2}{x+2} . \tag{6}
\end{equation*}
$$

20. Use algebra to find the set of values of x for which

$$
\begin{equation*}
\frac{x-2}{2(x+2)} \leqslant \frac{12}{x(x+2)} \tag{9}
\end{equation*}
$$

\qquad

