Dr Oliver Mathematics
 Applied Mathematics: Mechanics or Statistics Section B
 2005 Paper
 1 hour

The total number of marks available is 32 .
You must write down all the stages in your working.

1. Differentiate, and simplify as appropriate,
(a) $\mathrm{f}(x)=\exp \left(\tan \frac{1}{2} x\right)$, where $-\pi<x<\pi$,
(b) $\mathrm{g}(x)=\left(x^{3}+1\right) \ln \left(x^{3}+1\right)$, where $x>0$.
2. Given that

$$
\mathbf{A}=\left(\begin{array}{cc}
2 & 1 \tag{3}\\
0 & -1
\end{array}\right)
$$

show that

$$
\mathbf{A}^{2}-\mathbf{A}=k \mathbf{I}
$$

for a suitable value of k, where \mathbf{I} is the 2×2 unit matrix.
3. A curve is defined by the parametric equations

$$
\begin{equation*}
x=5 t^{2}-5 \text { and } y=3 t^{3} . \tag{2}
\end{equation*}
$$

(a) Find the value of t corresponding to the point $(0,-3)$.
(b) Calculate the gradient of the curve at this point.
4. Expand and simplify

$$
\left(2 a-\frac{3}{a}\right)^{4}
$$

5. (a) Express
in partial fractions.
(b) Hence obtain

$$
\begin{equation*}
\frac{x^{2}+3}{x\left(1+x^{2}\right)} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\int_{\frac{1}{2}}^{1} \frac{x^{2}+3}{x\left(1+x^{2}\right)} \mathrm{d} x . \tag{3}
\end{equation*}
$$

6. (a) Given the differential equation

$$
\begin{equation*}
\sin x \frac{\mathrm{~d} y}{\mathrm{~d} x}-2 y \cos x=0 \tag{4}
\end{equation*}
$$

find the general solution, expressing y explicitly in terms of x.
(b) Find the general solution of

$$
\begin{equation*}
\sin x \frac{\mathrm{~d} y}{\mathrm{~d} x}-2 y \cos x=3 \sin ^{3} x \tag{5}
\end{equation*}
$$

