Dr Oliver Mathematics AQA Further Maths Level 2 June 2015 Paper 2
 2 hours

The total number of marks available is 105 .
You must write down all the stages in your working.
You are permitted to use a scientific or graphical calculator in this paper.

1. A circle, centre $(0,0)$, has circumference 12π.

Work out the equation of the circle.

Solution

The r be the radius. Then

$$
2 \pi r=12 \pi \Rightarrow r=6
$$

and the equation of the circle is

$$
(x-0)^{2}+(y-0)^{2}=6^{2} \Rightarrow x^{2}+y^{2}=36 .
$$

2.

$$
a: b: c=5: 3: 2 .
$$

Work out

$$
4 a-c: 3 b .
$$

Give your answer in its simplest form.

Solution

$$
\begin{aligned}
4 a-c: 3 b & \Rightarrow(4 \times 5)-2: 3 \times 3 \\
& \Rightarrow 20-2: 9 \\
& \Rightarrow 18: 9 \\
& \Rightarrow \underline{2: 1} .
\end{aligned}
$$

3. The distance between the points $(2,5 p)$ and $(2,-10)$ is 30 units.

Work out the two possible values of p.

Solution

$$
\begin{aligned}
(2-2)^{2}+[5 p-(-10)]^{2}=30^{2} & \Rightarrow(5 p+10)^{2}=30^{2} \\
& \Rightarrow 5 p+10= \pm 30 \\
& \Rightarrow 5 p=-10 \pm 30 \\
& \Rightarrow p=-2 \pm 6 \\
& \Rightarrow \underline{\underline{p=-8} \text { or } p=4} .
\end{aligned}
$$

4. The first term of a sequence is $1-a$.

The term-to-term rule of a sequence is

$$
\begin{equation*}
\text { add } 2 a \text { then multiply by } 3 \text {. } \tag{1}
\end{equation*}
$$

(a) Show that the second term is $3+3 a$.

Solution

$$
\begin{aligned}
2 \text { nd term } & =3[(1-a)+2 a] \\
& =3(1+a) \\
& =\underline{\underline{3+3 a}},
\end{aligned}
$$

as required.

The third term is 16 .
(b) Work out the value of a.

Solution

$$
\begin{aligned}
3 \text { rd term }=16 & \Rightarrow 3[(3+3 a)+2 a]=16 \\
& \Rightarrow 3(3+5 a)=16 \\
& \Rightarrow 9+15 a=16 \\
& \Rightarrow 15 a=7 \\
& \Rightarrow a=\frac{7}{15} .
\end{aligned}
$$

5. A straight line L is parallel to the straight line $y=1-2 x$ and passes through $(3,-1)$.

On the grid below, draw the straight line L for values of x from -3 to 3 .

Solution

Well, the equation of the line is

$$
y=-2 x+c,
$$

for some c. Now,

$$
-1=-2(3)+c \Rightarrow c=5
$$

and the equation is

$$
y=-2 x+5
$$

6. Write

$$
\frac{15 x^{8}-18 x^{7}}{3 x^{2}}
$$

in the form $a x^{n}-n x^{a}$, where a and n are integers.

Solution

$$
\begin{aligned}
\frac{15 x^{8}-18 x^{7}}{3 x^{2}} & =\frac{15 x^{8}}{3 x^{2}}-18 x^{7} 3 x^{2} \\
& =\underline{\underline{x^{6}-6 x^{5}}}
\end{aligned}
$$

hence, $\underline{\underline{a=6}}$ and $\underline{\underline{n=5}}$.
7.

$$
\begin{equation*}
y=\frac{2}{3} x^{6}-8 x^{3} . \tag{3}
\end{equation*}
$$

Work out the rate of change of y with respect to x when $x=-1$.

Solution

$$
y=\frac{2}{3} x^{6}-8 x^{3} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=4 x^{5}-24 x^{2}
$$

and

$$
\begin{aligned}
x=-1 & \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=4\left[(-1)^{5}\right]-24\left[(-1)^{2}\right] \\
& \Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=-4-24 \\
& \Rightarrow \frac{\underline{\mathrm{~d} y}}{\frac{\mathrm{~d} x}{x}}=-28 .
\end{aligned}
$$

8.

$$
\mathrm{f}(x)=x^{4}
$$

The domain of $\mathrm{f}(x)$ is $x \geqslant 2$
(a) Work out the range of $\mathrm{f}(x)$.

Solution

The range of $\mathrm{f}(x)$ is

$$
\mathrm{f}(x) \geqslant 2^{4} \Rightarrow \mathrm{f}(x) \geqslant 16
$$

$$
\mathrm{g}(x)=x^{2}-1
$$

The domain of $\mathrm{g}(x)$ is $-2 \leqslant x \leqslant 3$.
(b) Work out the range of $\mathrm{g}(x)$.

Solution

$\mathrm{g}(-2)=3, \mathrm{~g}(0)=-1$, and $\mathrm{g}(3)=8$ and so

$$
-1 \leqslant \mathrm{~g}(x) \leqslant 8
$$

$$
h(x)=5 x-3 .
$$

The range of $\mathrm{h}(x)$ is $-2<x<1$.
(c) Work out the domain of $\mathrm{h}(x)$.

Solution

$$
\begin{aligned}
5 x-3=-2 & \Rightarrow 5 x=1 \\
& \Rightarrow x=\frac{1}{5}
\end{aligned}
$$

and

$$
\begin{aligned}
5 x-3=1 & \Rightarrow 5 x=4 \\
& \Rightarrow x=\frac{4}{5} .
\end{aligned}
$$

Hence, the range of $\mathrm{h}(x)$ is

$$
\underline{\underline{1} 5<x<\frac{4}{5}} .
$$

9. (a) Solve

$$
6(2 y-3)-10=2 y .
$$

Solution

$$
\begin{aligned}
6(2 y-3)-10=2 y & \Rightarrow(12 y-18)-10=2 y \\
& \Rightarrow 10 y=28 \\
& \Rightarrow y=2.8 .
\end{aligned}
$$

(b) Solve

Solution

$$
\begin{aligned}
\frac{\sqrt{w+4}}{2}=6 & \Rightarrow \sqrt{w+4}=12 \\
& \Rightarrow w+4=144 \\
& \Rightarrow \underline{w=140}
\end{aligned}
$$

(c) Solve

$$
3 m^{\frac{1}{5}}+9=0 .
$$

Solution

$$
\begin{aligned}
3 m^{\frac{1}{5}}+9=0 & \Rightarrow 3 m^{\frac{1}{5}}=-9 \\
& \Rightarrow m^{\frac{1}{5}}=-3 \\
& \Rightarrow m=(-3)^{5} \\
& \Rightarrow \underline{m=-243} .
\end{aligned}
$$

10. The diagram shows a circle, centre C.
$T P$ is a tangent to the circle at P.

Work out the value of t. Dr Oliver

Solution

On account that is a radius,

$$
\begin{aligned}
& {\left[(3-2)^{2}+(6-8)^{2}\right]+\left[(2-(-4))^{2}+(8-t)^{2}\right]=(3-(-4))^{2}+(6-t)^{2}} \\
& \Rightarrow(1+4)+\left[36+\left(64-16 t+t^{2}\right)\right]=49+\left(36-12 t+t^{2}\right) \\
& \Rightarrow 105-16 t+t^{2}=85-12 t+t^{2} \\
& \Rightarrow \quad 20=4 t \\
& \Rightarrow \quad \underline{\underline{t=5}} \text {. }
\end{aligned}
$$

11. (a) Expand and simplify

$$
(3 w+2 y)(w-4 y)
$$

Solution

\times	$3 w$	$+2 y$
w	$3 w^{2}$	$+2 w y$
$-4 y$	$-12 w y$	$-8 y^{2}$

$$
(3 w+2 y)(w-4 y)=3 w^{2}-10 w y-8 y^{2} .
$$

(b) Expand and simplify

$$
\begin{equation*}
\frac{3}{x^{2}}\left(\frac{x}{3}+3 x^{2}-1\right) \tag{3}
\end{equation*}
$$

Solution

$$
\frac{3}{x^{2}}\left(\frac{x}{3}+3 x^{2}-1\right)=\underline{\underline{\frac{1}{x}}+9-\frac{3}{x^{2}}} .
$$

12. The area of the triangle is equal to the area of the square.

All dimensions are in centimetres.

Not drawn accurately

Write y in terms of x.

Solution

As the areas are equal,

$$
\begin{aligned}
\frac{1}{2} x y \sin 30^{\circ}=x^{2} & \Rightarrow y=\frac{x^{2}}{\frac{1}{2} x \sin 30^{\circ}} \\
& \Rightarrow y=4 x
\end{aligned}
$$

13. The diagram shows a circle, centre P, and a straight line passing through points P and Q.
Q lies on the y-axis and on the circumference of the circle.
The equation of the circle is

$$
(x-3)^{2}+y^{2}=25
$$

Work out the equation of the straight line through P and Q.
Give your answer in the form $a x+b y+c=0$, where a, b, and c are integers.

Solution

Well, $P(3,0)$ and

$$
\begin{aligned}
x=0 & \Rightarrow(0-3)^{2}+y^{2}=25 \\
& \Rightarrow 9+y^{2}=25 \\
& \Rightarrow y^{2}=16 \\
& \Rightarrow y= \pm 4 ;
\end{aligned}
$$

as Q is above the axis, $Q(0,4)$. Now, the gradient of the line $P Q$ is

$$
\frac{0-4}{3-0}=-\frac{4}{3}
$$

and the equation is

$$
\begin{aligned}
y-0=-\frac{4}{3}(x-3) & \Rightarrow 3 y=-4(x-3) \\
& \Rightarrow 3 y=-4 x+12 \\
& \Rightarrow 4 x+3 y-12=0 .
\end{aligned}
$$

14. $P Q R$ is a straight line.
$P Q: Q R$ is $2: 3$.

(a) Show that $a=10: 5$.

Solution

$$
\begin{aligned}
P Q: Q R=2: 3 & \Rightarrow P Q: P R=2: 5 \\
& \Rightarrow 6-3: a-3=2: 5 \\
& \Rightarrow 3: a-3=2: 5 \\
& \Rightarrow \frac{a-3}{3}=\frac{5}{2} \\
& \Rightarrow a-3=7.5 \\
& \Rightarrow \underline{\underline{a}=10.5},
\end{aligned}
$$

as required.
(b) Work out the value of b.

Solution

$$
\begin{aligned}
P Q: P R=2: 5 & \Rightarrow 9 b-b: 7-b=2: 5 \\
& \Rightarrow 8 b: 7-b=2: 5 \\
& \Rightarrow \frac{7-b}{8 b}=\frac{5}{2} \\
& \Rightarrow 7-b=20 b \\
& \Rightarrow 21 b=7 \\
& \Rightarrow b=\frac{1}{3} .
\end{aligned}
$$

15. Use algebra to prove that the value of

$$
\begin{equation*}
\frac{8 c^{2}+16}{3 c^{2}+6}+\frac{1}{3} \tag{3}
\end{equation*}
$$

is an integer for all values of c.

Solution
$\qquad$$\frac{8 c^{2}+16}{3 c^{2}+6}+\frac{1}{3}$ $=\frac{3\left(8 c^{2}+16\right)}{3\left(3 c^{2}+6\right)}+\frac{3 c^{2}+6}{3\left(3 c^{2}+6\right)}$ $=\frac{\left(24 c^{2}+48\right)+\left(3 c^{2}+6\right)}{3\left(3 c^{2}+6\right)}$ $=\frac{27 c^{2}+54}{9\left(c^{2}+2\right)}$ $=\frac{27\left(c^{2}+2\right)}{9\left(c^{2}+2\right)}$ $=3$.

16. The diagram shows a rectangle with area $9 \mathrm{~cm}^{2}$.

Set up and solve an equation to work out the value of x.
Give your answer to 3 significant figures.

Solution

$$
\begin{aligned}
x(2 x-1)=9 & \Rightarrow 2 x^{2}-x=9 \\
& \Rightarrow 2 x^{2}-x-9=0
\end{aligned}
$$

$a=2, b=-1$, and $c=-9$

$$
\begin{aligned}
& \Rightarrow x=\frac{1 \pm \sqrt{(-1)^{2}-4(2)(-9)}}{2(2)} \\
& \Rightarrow x=\frac{1 \pm \sqrt{73}}{4} \\
& \Rightarrow x=-1.886000936,2.386000936(\mathrm{FCD})
\end{aligned}
$$

Now, $x>0.5$ (why?) so $x=2.39$ (FCD).
17. $A B C D E F G H$ is a cuboid.

$H B=34 \mathrm{~cm}$.
$H D=16 \mathrm{~cm}$.
$A D=18 \mathrm{~cm}$.
(a) Work out the length of $A B$.

Solution

$$
\begin{aligned}
H B^{2}=A B^{2}+A D^{2}+H D^{2} & \Rightarrow 34^{2}=A B^{2}+18^{2}+16^{2} \\
& \Rightarrow A B^{2}=576 \\
& \Rightarrow \underline{A B=24 \mathrm{~cm}} .
\end{aligned}
$$

(b) Work out the angle between $H B$ and $A B C D$.

Solution

$$
\begin{aligned}
\sin =\frac{\mathrm{opp}}{\mathrm{hyp}} & \Rightarrow \text { sin angle }=\frac{16}{34} \\
& \Rightarrow \text { angle }=28.07248694(\mathrm{FCD}) \\
& \Rightarrow \underline{\underline{\text { angle }}=28.1^{\circ}(3 \mathrm{sf}) .}
\end{aligned}
$$

18. The sketch shows the quadratic curve

$$
y=4(x-a)^{2}+b .
$$

The curve passes through $(0,10)$ and $(2,10)$.

(a) Give reasons why the value of a is 1 .

Solution

Draw in the line of symmetry and that is

$$
x=\frac{0+2}{2}=1 .
$$

Hence, $\underline{\underline{a=1}}$.
(b) Work out the value of b.

Solution

$$
\begin{aligned}
4(0-1)^{2}+b=10 & \Rightarrow 4+b=10 \\
& \Rightarrow \underline{\underline{b=6}} .
\end{aligned}
$$

(c) Write the equation of the curve in the form $y=p x^{2}+q x+r$.

Solution

\times	x	-1
x	x^{2}	$-x$
-1	$-x$	+1

$$
\begin{aligned}
y=4(x-1)^{2}+6 & \Rightarrow y=4\left(x^{2}-2 x+1\right)+6 \\
& \Rightarrow y=\left(4 x^{2}-8 x+4\right)+6 \\
& \Rightarrow y=4 x^{2}-8 x+10 .
\end{aligned}
$$

19. Use the factor theorem to show that $(x-3)$ is not a factor of

$$
\begin{equation*}
x^{3}-10 x-3 . \tag{2}
\end{equation*}
$$

Solution

Let

$$
\mathrm{f}(x)=x^{3}-10 x-3 .
$$

Then

$$
f(3)=3^{3}-10(3)-3=-6
$$

and, hence, $(x-3)$ is not a factor of this cubic.
20. The transformation matrix \mathbf{P} represents a 90° anti-clockwise rotation about the origin.
(a) Describe fully the single transformation represented by the matrix \mathbf{P}^{3}.

Solution

The transformation is a 270° anti-clockwise rotation about the origin (or $\underline{\underline{90^{\circ}}}$ clockwise rotation about the origin).

The transformation matrix \mathbf{Q} is

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

The transformation matrix \mathbf{R} is

$$
\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) .
$$

(b) Describe fully the single transformation represented by the matrix $\mathbf{Q R}$.

Solution

$$
\begin{aligned}
\mathbf{Q R} & =\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

and this is a rotation, by $\underline{\underline{180^{\circ}}}$, about the origin.
21. A cubic curve has

- a maximum point at $A(-4,10)$.
- a minimum point at $B(2,-26)$.

The tangent to the curve at A and the normal to the curve at B intersect at point C.
Work out the area of triangle $A B C$.
You may sketch a diagram to help you.

Solution

Well, the tangent to the curve at A has gradient 0 (why?) and the normal to the curve at B has infinite gradient (why?) so $C(2,10)$. Finally,

$$
\begin{aligned}
\text { area } & =\frac{1}{2} \times A C \times B C \\
& =\frac{1}{2} \times[2-(-4)] \times[10-(-26)] \\
& =\frac{1}{2} \times 6 \times 36 \\
& =\underline{\underline{108}} .
\end{aligned}
$$

22. A quadratic sequence starts

$$
\begin{array}{llll}
302 & 600 & 894 & 1184 \tag{3}
\end{array}
$$

(a) Work out an expression for the nth term.

Solution

Let nth term be

$$
a n^{2}+b n+c
$$

Write down the sequence:	302		600		894		1184
First line of differences:		298		294		290	
Second line of differences:		-4		-4			

Sequence: $a+b+c \quad 4 a+2 b+c \quad 9 a+3 b+c$
First line: $\quad 3 a+b \quad 5 a+b$
Second line:

$$
2 a
$$

We compare terms:

$$
\begin{gathered}
2 a=-4 \Rightarrow a=-2, \\
3 a+b=298
\end{gathered} \begin{aligned}
& \Rightarrow 3 \times(-2)+b=298 \\
& \Rightarrow b=304
\end{aligned}
$$

and

$$
\begin{aligned}
a+b+c=302 & \Rightarrow-2+304+c=302 \\
& \Rightarrow c=0
\end{aligned}
$$

hence,

$$
n \text {th term }=\underline{-2 n^{2}+304 n} .
$$

A term in the sequence has value 0 .
(b) Find the position of this term.

Solution

$$
\begin{aligned}
-2 n^{2}+304 n=0 & \Rightarrow-2 n(n-152)=0 \\
& \Rightarrow n=0 \text { or } \underline{\underline{n=152}}
\end{aligned}
$$

23. The continuous curve $y=\mathrm{f}(x)$ has exactly two stationary points.
P is a maximum point when $x=a$.
Q is a stationary point of inflection when $x=b$. $a<b$.
Which of these is correct?
Tick one box only.

When $a<x<b, \frac{\mathrm{~d} y}{\mathrm{~d} x}$ is positive
\quad and
when $x>b, \frac{\mathrm{~d} y}{\mathrm{~d} x}$ is positive
\square
When $a<x<b, \frac{\mathrm{~d} y}{\mathrm{~d} x}$ is positive
and
when $x>b, \frac{\mathrm{~d} y}{\mathrm{~d} x}$ is negative

when $x>b, \frac{\mathrm{~d} y}{\mathrm{~d} x}$ is positive

$$
\begin{aligned}
& \text { When } a<x<b, \frac{\mathrm{~d} y}{\mathrm{~d} x} \text { is negative } \\
& \text { and } \\
& \text { when } x>b, \frac{\mathrm{~d} y}{\mathrm{~d} x} \text { is negative }
\end{aligned}
$$

Solution

We draw a table:

	$x=a^{-}$	$x=a$	$x=a^{+}$	$x=b^{-}$	$x=a$	$x=B^{+}$
Slope	+ve	0	-ve	-ve	$?$	-ve

The fourth one.
24.

$$
\begin{equation*}
a^{2}<4 \text { and } a+2 b=8 . \tag{4}
\end{equation*}
$$

Work out the range of possible values of b.
Give your answer as an inequality.

Solution

Well,

$$
a^{2}<4 \Rightarrow-2<a<2
$$

and

$$
\begin{aligned}
a+2 b=8 & \Rightarrow a=8-2 b \\
& \Rightarrow-2<8-2 b<2 \\
& \Rightarrow-10<-2 b<-6 \\
& \Rightarrow-5<-b<-3 \\
& \Rightarrow \underline{\underline{3<b}-5} .
\end{aligned}
$$

25. Work out the values of x between 0° and 360° for which

$$
\begin{equation*}
25 \cos ^{2} x=9 . \tag{4}
\end{equation*}
$$

Give your answers to 1 decimal place.

$$
\begin{aligned}
& \text { Solution } \\
& \qquad \begin{aligned}
25 \cos ^{2} x=9 & \Rightarrow \cos ^{2} x=\frac{9}{25} \\
& \Rightarrow \cos x= \pm \frac{3}{5}
\end{aligned}
\end{aligned}
$$

$\cos x=\frac{3}{5}:$

$$
\begin{aligned}
\cos x=\frac{3}{5} & \Rightarrow x=53.13010235,306.8698976(\mathrm{FCD}) \\
& \Rightarrow x=53.1^{\circ}, 306.9^{\circ}(1 \mathrm{dp}) .
\end{aligned}
$$

$\cos x=-\frac{3}{5}:$

$$
\begin{aligned}
\cos x=-\frac{3}{5} & \Rightarrow x=126.8698976,233.13010235(\mathrm{FCD}) \\
& \Rightarrow x=126.9^{\circ}, 233.1^{\circ}(1 \mathrm{dp}) .
\end{aligned}
$$

26. A cone has base radius $r \mathrm{~cm}$ and slant height $l \mathrm{~cm}$.

A hemisphere has radius $r \mathrm{~cm}$.

The curved surface area of the cone equals the curved surface area of the hemisphere.
(a) Show that $l=2 r$.

Solution

Well, since the areas are equal,

$$
\frac{1}{2} \times 4 \pi r^{2}=\pi r l \Rightarrow \underline{2 r=l}
$$

as required.

$$
\begin{aligned}
& \\
& \\
& 21
\end{aligned}
$$

The cone has vertical height $h \mathrm{~cm}$.
The cone and hemisphere are joined to make the shape shown below.

(b) Show that the volume of the shape can be written as

$$
\begin{equation*}
\frac{1}{3} \pi r^{3}(a+\sqrt{b}) \mathrm{cm}^{3}, \tag{4}
\end{equation*}
$$

where a and b are integers.

Solution

$$
\begin{aligned}
\text { Volume } & =\text { hemisphere }+ \text { cone } \\
& =\left(\frac{1}{2} \times \frac{4}{3} \pi r^{3}\right)+\left(\frac{1}{3} \pi r^{2} h\right) \\
& =\frac{2}{3} \pi r^{3}+\frac{1}{3} \pi r^{2}\left(\sqrt{l^{2}-r^{2}}\right) \\
& =\frac{2}{3} \pi r^{3}+\frac{1}{3} \pi r^{2}\left(\sqrt{(2 r)^{2}-r^{2}}\right) \\
& =\frac{2}{3} \pi r^{3}+\frac{1}{3} \pi r^{2}\left(\sqrt{4 r^{2}-r^{2}}\right) \\
& =\frac{2}{3} \pi r^{3}+\frac{1}{3} \pi r^{2}\left(\sqrt{3 r^{2}}\right) \\
& =\frac{2}{3} \pi r^{3}+\frac{1}{3} \pi r^{3} \sqrt{3} \\
& =\underline{\underline{\frac{1}{3}} \pi r^{3}(2+\sqrt{3})} ;
\end{aligned}
$$

hence, $\underline{\underline{a=2}}$ and $\underline{\underline{b=3}}$.
27. Work out the values of a when

$$
\begin{equation*}
2^{a^{2}}=8^{a} \times 16 . \tag{4}
\end{equation*}
$$

Do not use trial and improvement.
You must show your working.

Solution

$$
\begin{aligned}
& 2^{a^{2}}=8^{a} \times 16 \Rightarrow 2^{a^{2}}=\left(2^{3}\right)^{a} \times 2^{4} \\
& \Rightarrow 2^{a^{2}}=2^{3 a} \times 2^{4} \\
& \Rightarrow 2^{a^{2}}=2^{3 a+4} \\
& \Rightarrow a^{2}=3 a+4 \\
& \Rightarrow a^{2}-3 a-4=0 \\
& \\
&\left.\begin{array}{rl}
\text { add to: } & -3 \\
\text { multiply to: } & -4
\end{array}\right\}-4,+1 \\
& \Rightarrow(a-4)(a+1)=0 \\
& \Rightarrow a=-1 \text { or } a=4
\end{aligned}
$$

