Dr Oliver Mathematics OCR FMSQ Additional Mathematics 2015 Paper 2 hours

The total number of marks available is 100 .
You must write down all the stages in your working.
You are permitted to use a scientific or graphical calculator in this paper.
Final answers should be given correct to three significant figures where appropriate.

Section A

1. Find the equation of the line which is perpendicular to the line

$$
\begin{equation*}
2 x+3 y=5 \tag{3}
\end{equation*}
$$

and which passes through the point $(3,4)$.

Solution

$$
\begin{aligned}
2 x+3 y=5 & \Rightarrow 3 y=-2 x-5 \\
& \Rightarrow y=-\frac{2}{3} x-\frac{5}{3}
\end{aligned}
$$

and so the gradient of the perpendicular is

$$
-\frac{1}{-\frac{2}{3}}=\frac{3}{2} .
$$

Hence, the equation of the line is

$$
\begin{aligned}
y-4=\frac{3}{2}(x-3) & \Rightarrow y-4=\frac{3}{2} x-\frac{9}{2} \\
& \Rightarrow y=\frac{\underline{3}}{2} x-\frac{1}{2} .
\end{aligned}
$$

2. (a) Find α in the range $0^{\circ} \leqslant \alpha \leqslant 180^{\circ}$ such that

$$
\begin{equation*}
\tan \alpha=-1.5 \tag{2}
\end{equation*}
$$

Solution

$$
\begin{aligned}
\tan \alpha=-1.5 & \Rightarrow \alpha=-56.309 \ldots(\text { out of range }), 123.6900675(\mathrm{FCD}) \\
& \Rightarrow \alpha=124(3 \mathrm{sf}) .
\end{aligned}
$$

(b) Find β in the range $0^{\circ} \leqslant \beta \leqslant 180^{\circ}$ such that

$$
\sin \beta=0.2 \text {. }
$$

Solution

$$
\begin{aligned}
\sin \beta=0.2 & \Rightarrow \beta=11.53695903,168.463041(\mathrm{FCD}) \\
& \Rightarrow \underline{\underline{\beta=11.5,168(3 \mathrm{sf})} .}
\end{aligned}
$$

3. Find the equation of the tangent to the curve

$$
y=x^{3}+3 x-5
$$

at the point $(2,9)$.

Solution

$$
y=x^{3}+3 x-5 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 x^{2}+3
$$

and

$$
x=2 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=15 .
$$

Hence, the equation of the tangent is

$$
\begin{aligned}
y-9=15(x-2) & \Rightarrow y-9=15 x-30 \\
& \Rightarrow y=15 x-21
\end{aligned}
$$

4. (a) Find

$$
\int_{1}^{2}\left(x^{2}+2 x+3\right) \mathrm{d} x .
$$

Solution

$$
\begin{aligned}
\int_{1}^{2}\left(x^{2}+2 x+3\right) \mathrm{d} x & =\left[\frac{1}{3} x^{3}+x^{2}+3 x\right]_{x=1}^{2} \\
& =\left(\frac{8}{3}+4+6\right)-\left(\frac{1}{3}+1+3\right) \\
& =\underline{\underline{8 \frac{1}{3}}} .
\end{aligned}
$$

(b) Interpret your answer geometrically.

Solution

There is $8 \underline{8 \frac{1}{3} \text { units }^{2}}$ of area between the curve, the x-axis, the $x=1$, and the $x=2$.
5. A train accelerates from rest from a point O such that at t seconds the displacement, s metres from O, is given by the formula

$$
\begin{equation*}
s=\frac{3}{2} t^{2}-2 t+3 \tag{3}
\end{equation*}
$$

(a) Show by calculus that the acceleration is constant.

Solution

$$
\begin{aligned}
s=\frac{3}{2} t^{2}-2 t+3 & \Rightarrow v=3 t-2 \\
& \Rightarrow \underline{\underline{a=3 \mathrm{~ms}^{-2}}}
\end{aligned}
$$

as required.
(b) Find the velocity after 5 seconds.

Solution

$$
t=5 \Rightarrow v=\underline{\underline{13 \mathrm{~ms}^{-1}}} .
$$

6. You are given that n is a positive integer and $(n-1), n,(n+1)$ are three consecutive integers.

In each of the following cases form an equation in n and solve it.
(a) The three integers add up to 99 .

Solution

$$
\begin{aligned}
(n-1)+n+(n+1) 99 & \Rightarrow 3 n=99 \\
& \Rightarrow \underline{\underline{n=33}} .
\end{aligned}
$$

(b) When the product of the first integer and third integer is added to 5 times the second integer the sum is 203.

Solution

$$
\begin{gathered}
\begin{array}{c|cc}
\times & n & -1 \\
\hline n & n^{2} & -n \\
+1 & +n & -1 \\
\hline
\end{array} \\
\left.\begin{array}{rl}
(n-1)(n+1)+5 n=203 & \Rightarrow\left(n^{2}-1\right)+5 n=203 \\
& \Rightarrow n^{2}+5 n-204=0 \\
\text { add to: } & +5 \\
\text { multiply to: }-204
\end{array}\right\}-12,+17 \\
\\
\end{gathered} \begin{aligned}
& \Rightarrow(n-12)(n+17)=0 \\
& \Rightarrow n=12 \text { or } n=-17
\end{aligned}
$$

clearly, $n>0$ and so we have $\underline{\underline{n=12}}$.
7. (a) Solve algebraically the simultaneous equations

$$
y=3+5 x-x^{2} \text { and andy }=x+7
$$

Solution

$$
3+5 x-x^{2}=x+7 \Rightarrow x^{2}-4 x+4=0
$$

$$
\begin{array}{ll}
\left.\begin{array}{ll}
\text { add to: } & -4 \\
\text { multiply to: } & +4
\end{array}\right\}-2,-2 \\
& \Rightarrow(x-2)^{2}=0 \\
& \Rightarrow x=2 \text { (repeated) } \\
& \Rightarrow y=9 ;
\end{array}
$$

hence,

$$
x=2, y=9 .
$$

(b) Interpret your answer geometrically.

Solution

8. The cubic polynomial

$$
\mathrm{f}(x)=x^{3}+a x+6
$$

where a is a constant, has a factor of $(x+3)$.
(a) Find the value of a.

Solution

We use synthetic division:

-3	1	0	a	6
	\downarrow	-3	9	$-3(a+9)$
	1	-3	$a+9$	$6-3(a+9)$

Now,

$$
\begin{aligned}
\mathrm{f}(-3)=0 & \Rightarrow 6-3(a+9)=0 \\
& \Rightarrow 6=3(a+9) \\
& \Rightarrow 2=a+9 \\
& \Rightarrow a=-7 .
\end{aligned}
$$

(b) Hence or otherwise, solve the equation $\mathrm{f}(x)=0$ for this value of a.

Solution

$$
\begin{aligned}
& \mathrm{f}(x)=0 \Rightarrow(x+3)\left(x^{2}-3 x+2\right)=0 \\
& \left.\begin{array}{rl}
\text { add to: } & -3 \\
\text { multiply to: } & +2
\end{array}\right\}-2,-1 \\
& \quad \Rightarrow(x+3)(x-2)(x-1)=0 \\
& \\
& \Rightarrow x=-3, x=1, \text { or } x=2 .
\end{aligned}
$$

9. The equation of the circle C is

$$
x^{2}+y^{2}-8 x+2 y-19=0 .
$$

(a) Express the equation of C in the form

$$
\begin{equation*}
(x-a)^{2}+(y-b)^{2}=r^{2} \tag{4}
\end{equation*}
$$

Solution

$$
\begin{aligned}
x^{2}+y^{2}-8 x+2 y-19=0 & \Rightarrow x^{2}-8 x+y^{2}+2 y=19 \\
& \Rightarrow\left(x^{2}-8 x+16\right)+\left(y^{2}+2 y+1\right)=19+16+1 \\
& \Rightarrow(x-4)^{2}+(y+1)^{2}=36 \\
& \Rightarrow(x-4)^{2}+(y+1)^{2}=6^{2} ;
\end{aligned}
$$

hence, $\underline{\underline{a=4}}, \underline{\underline{b=-1}}$, and $\underline{\underline{c=6}}$.
(b) Hence or otherwise, use an algebraic method to decide whether the point $(8,3)$ lies inside, outside or on the circumference of the circle.
Show all your working.

Solution

$$
\begin{aligned}
(8-4)^{2}+(3+1)^{2} & =4^{2}+4^{2} \\
& =32 \\
& >36 \\
& =6^{2}
\end{aligned}
$$

hence, the point $(8,3)$ lies inside the circle.
10. The figure shows a partly open window $O A$, viewed from above. The window is hinged at O. When the window is closed, the end A is at point B. The window is kept open by a $\operatorname{rod} C D$, where C is a fixed point on the line $O B$.

The point D slides along a fixed bar $E F$. When the window is closed, D is at F. When the window is fully open, D is at E.
$O A=O B=20 \mathrm{~cm}, O C=8 \mathrm{~cm}, C D=7 \mathrm{~cm}, E F=5 \mathrm{~cm}$, and $O E=10 \mathrm{~cm}$.
Find
(a) angle $E O C$ when the window is fully open,

Solution

Let θ° when the window is fully open. We use the cosine rule:

$$
\begin{aligned}
\cos \theta=\frac{10^{2}+8^{2}-7^{2}}{2 \times 10 \times 8} & \Rightarrow \cos \theta=\frac{23}{32} \\
& \Rightarrow \theta=44.04862567(\mathrm{FCD}) \\
& \Rightarrow \theta=44.0^{\circ}(3 \mathrm{sf}) .
\end{aligned}
$$

(b) the distance $O D$ when angle $E O C$ is 30°.

Solution

We use $x=O D$. We use the cosine rule:

$$
\begin{aligned}
7^{2}=x^{2}+8^{2}-2 \cdot x \cdot 8 \cdot \cos 30^{\circ} & \Rightarrow 49=x^{2}+64-8 \sqrt{3} x \\
& \Rightarrow x^{2}-8 \sqrt{3} x+15=0
\end{aligned}
$$

$$
a=1, b=-8 \sqrt{3}, c=15
$$

$$
\begin{aligned}
& \Rightarrow x=\frac{8 \sqrt{3} \pm \sqrt{132}}{2} \\
& \Rightarrow x=1.183 \ldots(\mathrm{no!}), 12.67276588(\mathrm{FCD}) \\
& \Rightarrow x=12.7 \mathrm{~cm}(3 \mathrm{sf}) .
\end{aligned}
$$

Section B

11. Two curves, S_{1} and S_{2} have equations

$$
y=x^{2}-4 x+7 \text { and } y=6 x-x^{2}-1
$$

respectively.

The curves meet at A and at B.
(a) Show that the coordinates of A and B are $(1,4)$ and $(4,7)$ respectively.

Solution

$$
\begin{aligned}
x^{2}-4 x+7=6 x-x^{2}-1 & \Rightarrow 2 x^{2}-10 x+8=0 \\
& \Rightarrow 2\left(x^{2}-5 x+4\right)=0
\end{aligned}
$$

$$
\begin{array}{ll}
\left.\begin{array}{ll}
\text { add to: } & -5 \\
\text { multiply to: } & -4
\end{array}\right\}-4,-1 \\
& \Rightarrow 2(x-1)(x-4)=0 \\
& \Rightarrow x=1 \text { or } x=4 \\
& \Rightarrow y=4 \text { or } y=7 ;
\end{array}
$$

hence, A and B are $\underline{\underline{(1,4)}}$ and $\underline{\underline{(4,7)}}$ respectively.

Points P and Q lie on S_{1} and S_{2} between A and $B . P$ and Q have the same x-coordinate so that $P Q$ is parallel to the y-axis, as shown in the above figure.
(b) Find an expression, in its simplest form, for the length $P Q$ as a function of x.

Solution

$$
\begin{aligned}
P Q & =\left(6 x-x^{2}-1\right)-\left(x^{2}-4 x+7\right) \\
& =-2 x^{2}+10 x-8 .
\end{aligned}
$$

(c) Use calculus to find the greatest length of $P Q$.

Solution

$$
P Q=-2 x^{2}+10 x-8 \Rightarrow \frac{\mathrm{~d}}{\mathrm{~d} x}(P Q)=-4 x+10
$$

and

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(P Q)=0 & \Rightarrow-4 x+10=0 \\
& \Rightarrow 4 x=10 \\
& \Rightarrow x=2.5 \\
& \Rightarrow P Q=4.5 \mathrm{~cm}
\end{aligned}
$$

(d) Find the area between the two curves.

Solution

$$
\begin{aligned}
\text { Area } & =\int_{1}^{4}\left(-2 x^{2}+10 x-8\right) \mathrm{d} x \\
& =\left[-\frac{2}{3} x^{3}+5 x^{2}-8 x\right]_{x=1}^{4} \\
& =\left(-42 \frac{2}{3}+80-32\right)-\left(-\frac{2}{3}+5-8\right) \\
& =\underline{\underline{9}} .
\end{aligned}
$$

12. A distributor of flower bulbs has a large number of tulip bulbs and daffodil bulbs, mixed in the ratio 1:3 respectively. He packs the bulbs in boxes. He puts 10 bulbs, chosen at random, into each box.
(a) Find the probability that a box, chosen at random, contains
(i) exactly 4 daffodil bulbs,

Solution

$$
\begin{aligned}
\mathrm{P}(\text { exactly } 4 \text { daffodil bulbs }) & =\binom{10}{4}(0.75)^{4}(0.25)^{6} \\
& =0.01622200012(\mathrm{FCD}) \\
& =\underline{\underline{0.0162(3 \mathrm{sf})} .}
\end{aligned}
$$

(ii) at least 1 tulip bulb.

Solution

$$
\begin{aligned}
\mathrm{P}(\text { at least } 1 \text { tulip bulb }) & =1-\mathrm{P}(0 \text { tulip bulbs }) \\
& =1-(0.75)^{10} \\
& =0.9436864853(\mathrm{FCD}) \\
& =\underline{\underline{0.944(3 \mathrm{sf})} .}
\end{aligned}
$$

Two boxes of bulbs are chosen at random.
(b) Find the probability that there is a total of 3 tulip bulbs in the two boxes.

Solution

$$
\begin{aligned}
\mathrm{P}(3 \text { tulip bulbs }) & =\binom{20}{3}(0.25)^{3}(0.75)^{17} \\
& =0.1338956152(\mathrm{FCD}) \\
& =\underline{\underline{0.134(3 \mathrm{sf})} .}
\end{aligned}
$$

13. A gardener marks out a regular hexagon $A B C D E F$ on his horizontal garden.

Each side of the hexagon is 0.5 m . The gardener sticks a cane in the ground at each point of the hexagon. He joins the six canes at V where V is vertically above the centre, O, of the hexagon, as shown below. Each cane has a length of 2.4 m from the ground to V.

Calculate, giving your answers to 3 significant figures,
(a) the vertical height of V above the ground,

Solution

Well, $\triangle O A B$ is an equilateral triangle and so

$$
\begin{aligned}
A V^{2}=O A^{2}+O V^{2} & \Rightarrow 2.4^{2}=0.5^{2}+O V^{2} \\
& \Rightarrow O V^{2}=5.51 \\
& \Rightarrow O V=2.347338919(\mathrm{FCD}) \\
& \Rightarrow \underline{\underline{O V=2.35 \mathrm{~m}(3 \mathrm{sf})} .}
\end{aligned}
$$

(b) the angle between each cane and the ground,

Solution

$$
\begin{aligned}
\cos =\frac{\text { adj }}{\text { hyp }} & \Rightarrow \cos O A V=\frac{0.5}{2.4} \\
& \Rightarrow \angle O A V=77.97530082(\mathrm{FCD}) \\
& \Rightarrow \angle O A V=78.0^{\circ}(3 \mathrm{sf}) .
\end{aligned}
$$

(c) the angle between the plane $V A B$ and the ground.

Solution

$$
\begin{aligned}
O A^{2}=A M^{2}+M O^{2} & \Rightarrow 0.5^{2}=0.25^{2}+M O^{2} \\
& \Rightarrow M O^{2}=0.1875 \\
& \Rightarrow M O=0.4330127019(\mathrm{FCD})
\end{aligned}
$$

and

$$
\begin{aligned}
\tan =\frac{\mathrm{opp}}{\mathrm{adj}} & \Rightarrow \tan V M O=\frac{2.347 \ldots}{0.433 \ldots} \\
& \Rightarrow \angle V M O=79.54816794(\mathrm{FCD}) \\
& \Rightarrow \angle V M O=79.5^{\circ}(3 \mathrm{sf}) .
\end{aligned}
$$

The gardener stretches a horizontal wire around the structure to strengthen it. He fixes the wire to each cane at a point 1 m vertically above the ground.
(d) Find the length of the wire.

Solution

Let O^{\prime} and A^{\prime} be the points O and A moved 1 m up.

We use similar shapes:

$$
\begin{aligned}
\mathrm{LSF} & =\frac{O V^{\prime}}{O V} \\
& =\frac{O V-1}{O V} \\
& =\frac{2.347 \ldots-1}{2.347 \ldots} \\
& =0.5739856772(\mathrm{FCD})
\end{aligned}
$$

and

$$
\begin{aligned}
O A^{\prime} & =O A \times \mathrm{LSF} \\
& =0.5 \times 0.286 \ldots \\
& =0.2869928386(\mathrm{FCD})
\end{aligned}
$$

Finally,

$$
\begin{aligned}
\text { length } & =6 \times 0.286 \ldots \\
& =1.721957031(\mathrm{FCD}) \\
& =\underline{\underline{1.72 \mathrm{~m}(3 \mathrm{sf})}} .
\end{aligned}
$$

14. A company produces bottles of two liquids, X and Y. There are two ingredients, A and B, in each liquid.

The table shows the quantities, in centilitres (cl), of A and B needed for each bottle of liquid.

	A	B
X	4	2
Y	3	5

Each day the company can use 84 cl of A and 90 cl of B.
From this information an analyst writes down the inequality

$$
4 x+3 y \leqslant 84
$$

(a) Explain what x and y stand for in this inequality and explain what the inequality models.

Solution

x is the number of units of X produced, y is the number of units of Y produced, and $4 x+3 y \leqslant 84$ models the quantity of A.
(b) Use the information given to write down another inequality, other than $x \geqslant 0$ and $y \geqslant 0$.

Solution

$\underline{\underline{2 x+5 y \leqslant 90}}$.
(c) Illustrate your two inequalities. Shade the region that is not required.

Solution

The company needs to produce the same number of bottles of X and of Y each day.
(d) Find the maximum number of bottles of X and of Y that the company can produce.

Solution

On one day the company does not have to produce the same numbers of bottles of X and of Y.
(e) Write down the maximum number of bottles that can be produced and all the combinations that will give this maximum.

Solution

The maximum is $\underline{\underline{24}}: \underline{\underline{x=10, y=14}}, \underline{\underline{x=11, y=13}}$, or $\underline{\underline{x=12, y=12}}$.

