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The total number of marks available is 100.
You must write down all the stages in your working.
You are permitted to use a scientific or graphical calculator in this paper.
Final answers should be given correct to three significant figures where appropriate.

Section A

1. (3)Find the equation of the line which is perpendicular to the line

2x` 3y “ 5

and which passes through the point p3, 4q.

Solution

2x` 3y “ 5 ñ 3y “ ´2x´ 5

ñ y “ ´2
3
x´ 5

3

and so the gradient of the perpendicular is

´
1

´2
3

“ 3
2
.

Hence, the equation of the line is

y ´ 4 “ 3
2
px´ 3q ñ y ´ 4 “ 3

2
x´ 9

2

ñ y “ 3
2
x´ 1

2
.

2. (a) (2)Find α in the range 0˝ ď α ď 180˝ such that

tanα “ ´1.5.



Dr Oliver 
Mathematics 

 
Dr Oliver 

Mathematics 
 

Dr Oliver 
Mathematics 

 
Dr Oliver 

Mathematics 
 

Dr Oliver 
Mathematics 

 
Dr Oliver 

Mathematics 

Solution

tanα “ ´1.5 ñ α “ ´56.309 . . . (out of range), 123.690 067 5 (FCD)

ñ α “ 124 (3 sf).

(b) (2)Find β in the range 0˝ ď β ď 180˝ such that

sin β “ 0.2.

Solution

sin β “ 0.2 ñ β “ 11.536 959 03, 168.463 041 (FCD)

ñ β “ 11.5, 168 (3 sf).

3. (5)Find the equation of the tangent to the curve

y “ x3 ` 3x´ 5

at the point p2, 9q.

Solution

y “ x3 ` 3x´ 5 ñ
dy

dx
“ 3x2 ` 3

and

x “ 2 ñ
dy

dx
“ 15.

Hence, the equation of the tangent is

y ´ 9 “ 15px´ 2q ñ y ´ 9 “ 15x´ 30

ñ y “ 15x´ 21.

4. (a) (4)Find
ż 2

1

px2 ` 2x` 3q dx.

2
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Solution

ż 2

1

px2 ` 2x` 3q dx “
“

1
3
x3 ` x2 ` 3x

‰2

x“1

“
`

8
3
` 4` 6

˘

´
`

1
3
` 1` 3

˘

“ 81
3
.

(b) (1)Interpret your answer geometrically.

Solution

There is 81
3

units2 of area between the curve, the x-axis, the x “ 1, and the

x “ 2.

5. A train accelerates from rest from a point O such that at t seconds the displacement,
s metres from O, is given by the formula

s “ 3
2
t2 ´ 2t` 3.

(a) (3)Show by calculus that the acceleration is constant.

Solution

s “ 3
2
t2 ´ 2t` 3 ñ v “ 3t´ 2

ñ a “ 3 ms´2,

as required.

(b) (2)Find the velocity after 5 seconds.

Solution

t “ 5 ñ v “ 13 ms´1.

6. You are given that n is a positive integer and pn ´ 1q, n, pn ` 1q are three consecutive
integers.

In each of the following cases form an equation in n and solve it.

(a) (2)The three integers add up to 99.

3
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Solution

pn´ 1q ` n` pn` 1q99 ñ 3n “ 99

ñ n “ 33.

(b) (4)When the product of the first integer and third integer is added to 5 times the
second integer the sum is 203.

Solution

ˆ n ´1

n n2 ´n
`1 `n ´1

pn´ 1qpn` 1q ` 5n “ 203 ñ pn2
´ 1q ` 5n “ 203

ñ n2
` 5n´ 204 “ 0

add to: `5
multiply to: ´204

*

´ 12, `17

ñ pn´ 12qpn` 17q “ 0

ñ n “ 12 or n “ ´17;

clearly, n ą 0 and so we have n “ 12.

7. (a) (4)Solve algebraically the simultaneous equations

y “ 3` 5x´ x2 and andy “ x` 7.

Solution

3` 5x´ x2 “ x` 7 ñ x2 ´ 4x` 4 “ 0

4
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add to: ´4
multiply to: `4

*

´ 2, ´2

ñ px´ 2q2 “ 0

ñ x “ 2 (repeated)

ñ y “ 9;

hence,
x “ 2, y “ 9.

(b) (1)Interpret your answer geometrically.

Solution

The line is tangent to the curve at p2, 9q.

8. The cubic polynomial
fpxq “ x3 ` ax` 6,

where a is a constant, has a factor of px` 3q.

(a) (2)Find the value of a.

Solution

We use synthetic division:

´3 1 0 a 6
Ó ´3 9 ´3pa` 9q
1 ´3 a` 9 6´ 3pa` 9q

Now,

fp´3q “ 0 ñ 6´ 3pa` 9q “ 0

ñ 6 “ 3pa` 9q

ñ 2 “ a` 9

ñ a “ ´7.

(b) (4)Hence or otherwise, solve the equation fpxq “ 0 for this value of a.

5
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Solution

fpxq “ 0 ñ px` 3qpx2 ´ 3x` 2q “ 0

add to: ´3
multiply to: `2

*

´ 2, ´1

ñ px` 3qpx´ 2qpx´ 1q “ 0

ñ x “ ´3, x “ 1, or x “ 2.

9. The equation of the circle C is

x2 ` y2 ´ 8x` 2y ´ 19 “ 0.

(a) (4)Express the equation of C in the form

px´ aq2 ` py ´ bq2 “ r2.

Solution

x2 ` y2 ´ 8x` 2y ´ 19 “ 0 ñ x2 ´ 8x` y2 ` 2y “ 19

ñ px2 ´ 8x` 16q ` py2 ` 2y ` 1q “ 19` 16` 1

ñ px´ 4q2 ` py ` 1q2 “ 36

ñ px´ 4q2 ` py ` 1q2 “ 62;

hence, a “ 4, b “ ´1, and c “ 6.

(b) (2)Hence or otherwise, use an algebraic method to decide whether the point p8, 3q lies
inside, outside or on the circumference of the circle.
Show all your working.

Solution

p8´ 4q2 ` p3` 1q2 “ 42
` 42

“ 32

ą 36

“ 62;

6
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hence, the point p8, 3q lies inside the circle.

10. The figure shows a partly open window OA, viewed from above. The window is hinged
at O. When the window is closed, the end A is at point B. The window is kept open
by a rod CD, where C is a fixed point on the line OB.

The point D slides along a fixed bar EF . When the window is closed, D is at F . When
the window is fully open, D is at E.

OA “ OB “ 20 cm, OC “ 8 cm, CD “ 7 cm, EF “ 5 cm, and OE “ 10 cm.

Find

(a) (3)angle EOC when the window is fully open,

Solution

Let θ˝ when the window is fully open. We use the cosine rule:

cos θ “
102 ` 82 ´ 72

2ˆ 10ˆ 8
ñ cos θ “ 23

32

ñ θ “ 44.048 625 67 (FCD)

ñ θ “ 44.0˝ (3 sf).

(b) (4)the distance OD when angle EOC is 30˝.

Solution

We use x “ OD. We use the cosine rule:

72
“ x2 ` 82

´ 2 ¨ x ¨ 8 ¨ cos 30˝ ñ 49 “ x2 ` 64´ 8
?

3x

ñ x2 ´ 8
?

3x` 15 “ 0

7
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a “ 1, b “ ´8
?

3, c “ 15

ñ x “
8
?

3˘
?

132

2
ñ x “ 1.183 . . . (no!), 12.672 765 88 (FCD)

ñ x “ 12.7 cm (3 sf).

Section B

11. Two curves, S1 and S2 have equations

y “ x2 ´ 4x` 7 and y “ 6x´ x2 ´ 1

respectively.

The curves meet at A and at B.

(a) (2)Show that the coordinates of A and B are p1, 4q and p4, 7) respectively.

Solution

x2 ´ 4x` 7 “ 6x´ x2 ´ 1 ñ 2x2 ´ 10x` 8 “ 0

ñ 2px2 ´ 5x` 4q “ 0

8
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add to: ´5
multiply to: ´4

*

´ 4, ´1

ñ 2px´ 1qpx´ 4q “ 0

ñ x “ 1 or x “ 4

ñ y “ 4 or y “ 7;

hence, A and B are p1, 4q and p4, 7q respectively.

Points P and Q lie on S1 and S2 between A and B. P and Q have the same x-coordinate
so that PQ is parallel to the y-axis, as shown in the above figure.

(b) (2)Find an expression, in its simplest form, for the length PQ as a function of x.

Solution

PQ “ p6x´ x2 ´ 1q ´ px2 ´ 4x` 7q

“ ´2x2 ` 10x´ 8.

(c) (4)Use calculus to find the greatest length of PQ.

Solution

PQ “ ´2x2 ` 10x´ 8 ñ
d

dx
pPQq “ ´4x` 10

and

d

dx
pPQq “ 0 ñ ´4x` 10 “ 0

ñ 4x “ 10

ñ x “ 2.5

ñ PQ “ 4.5 cm

(d) (4)Find the area between the two curves.

Solution

9
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Area “

ż 4

1

p´2x2 ` 10x´ 8q dx

“
“

´2
3
x3 ` 5x2 ´ 8x

‰4

x“1

“
`

´422
3
` 80´ 32

˘

´
`

´2
3
` 5´ 8

˘

“ 9.

12. A distributor of flower bulbs has a large number of tulip bulbs and daffodil bulbs, mixed
in the ratio 1 : 3 respectively. He packs the bulbs in boxes. He puts 10 bulbs, chosen at
random, into each box.

(a) Find the probability that a box, chosen at random, contains

(i) (4)exactly 4 daffodil bulbs,

Solution

Ppexactly 4 daffodil bulbsq “

ˆ

10

4

˙

p0.75q4p0.25q6

“ 0.016 222 000 12 (FCD)

“ 0.016 2 (3 sf).

(ii) (3)at least 1 tulip bulb.

Solution

Ppat least 1 tulip bulbq “ 1´ Pp0 tulip bulbsq

“ 1´ p0.75q10

“ 0.943 686 485 3 (FCD)

“ 0.944 (3 sf).

Two boxes of bulbs are chosen at random.

(b) (5)Find the probability that there is a total of 3 tulip bulbs in the two boxes.

Solution

10
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Pp3 tulip bulbsq “

ˆ

20

3

˙

p0.25q3p0.75q17

“ 0.133 895 615 2 (FCD)

“ 0.134 (3 sf).

13. A gardener marks out a regular hexagon ABCDEF on his horizontal garden.
Each side of the hexagon is 0.5 m. The gardener sticks a cane in the ground at each
point of the hexagon. He joins the six canes at V where V is vertically above the centre,
O, of the hexagon, as shown below. Each cane has a length of 2.4 m from the ground to
V .

Calculate, giving your answers to 3 significant figures,

(a) (3)the vertical height of V above the ground,

Solution

Well, 4OAB is an equilateral triangle and so

AV 2
“ OA2

`OV 2
ñ 2.42

“ 0.52
`OV 2

ñ OV 2
“ 5.51

ñ OV “ 2.347 338 919 (FCD)

ñ OV “ 2.35 m (3 sf).

(b) (2)the angle between each cane and the ground,

11
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Solution

cos “
adj

hyp
ñ cosOAV “

0.5

2.4

ñ =OAV “ 77.975 300 82 (FCD)

ñ =OAV “ 78.0˝ (3 sf).

(c) (4)the angle between the plane V AB and the ground.

Solution

A BM

O

0.5 m

0.25 m 0.25 m

60˝

OA2
“ AM2

`MO2
ñ 0.52

“ 0.252
`MO2

ñMO2
“ 0.187 5

ñMO “ 0.433 012 701 9 (FCD)

and

tan “
opp

adj
ñ tanVMO “

2.347 . . .

0.433 . . .

ñ =VMO “ 79.548 167 94 (FCD)

ñ =VMO “ 79.5˝ (3 sf).

The gardener stretches a horizontal wire around the structure to strengthen it. He fixes
the wire to each cane at a point 1 m vertically above the ground.

(d) (3)Find the length of the wire.

12
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Solution

Let O1 and A1 be the points O and A moved 1 m up.

A O

O1A1

1 m

We use similar shapes:

LSF “
OV 1

OV

“
OV ´ 1

OV

“
2.347 . . .´ 1

2.347 . . .
“ 0.573 985 677 2 (FCD)

and

OA1 “ OAˆ LSF

“ 0.5ˆ 0.286 . . .

“ 0.286 992 838 6 (FCD).

Finally,

length “ 6ˆ 0.286 . . .

“ 1.721 957 031 (FCD)

“ 1.72 m (3 sf).

14. A company produces bottles of two liquids, X and Y . There are two ingredients, A and
B, in each liquid.

The table shows the quantities, in centilitres (cl), of A and B needed for each bottle of
liquid.

13
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A B

X 4 2
Y 3 5

Each day the company can use 84 cl of A and 90 cl of B.

From this information an analyst writes down the inequality

4x` 3y ď 84.

(a) (2)Explain what x and y stand for in this inequality and explain what the inequality
models.

Solution

x is the number of units of X produced, y is the number of units of Y produced,
and 4x` 3y ď 84 models the quantity of A.

(b) (1)Use the information given to write down another inequality, other than x ě 0 and
y ě 0.

Solution

2x` 5y ď 90.

(c) (3)Illustrate your two inequalities. Shade the region that is not required.

Solution

14
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x

y

O 5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

The company needs to produce the same number of bottles of X and of Y each day.

(d) (2)Find the maximum number of bottles of X and of Y that the company can produce.

Solution

15
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x

y

O 5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

Hence, x “ 12, y “ 12.

On one day the company does not have to produce the same numbers of bottles of X
and of Y .

(e) (4)Write down the maximum number of bottles that can be produced and all the
combinations that will give this maximum.

Solution

The maximum is 24: x “ 10, y “ 14, x “ 11, y “ 13, or x “ 12, y “ 12.

16


