Dr Oliver Mathematics
 Further Mathematics Numerical Solutions Past Examination Questions

This booklet consists of 28 questions across a variety of examination topics. The total number of marks available is 227 .

There are three examples of this technique.

1 Interval bisection

We take, for example, $(a, \mathrm{f}(a))<0$ and $(b, \mathrm{f}(b))>0$. We then take

$$
\left(\frac{a+b}{2}, \mathrm{f}\left(\frac{a+b}{2}\right)\right)
$$

and it depends on the sign of

$$
\begin{gathered}
\mathrm{f}\left(\frac{a+b}{2}\right): \\
\left(\frac{a+b}{2}, \mathrm{f}\left(\frac{a+b}{2}\right)\right)<0 \text { then we take }\left(\frac{a+b}{2}, b\right)
\end{gathered}
$$

and

$$
\left(\frac{a+b}{2}, \mathrm{f}\left(\frac{a+b}{2}\right)\right)>0 \text { then we take }\left(a, \frac{a+b}{2}\right) .
$$

2 Linear interpolation

$$
\begin{aligned}
& \frac{x-a}{b-x}=\frac{|\mathrm{f}(a)|}{|\mathrm{f}(b)|} \\
\Rightarrow & |\mathrm{f}(b)|(x-a)=|\mathrm{f}(a)|(b-x) \\
\Rightarrow & |\mathrm{f}(b)| x-|\mathrm{f}(b)| a=|\mathrm{f}(a)| b-|\mathrm{f}(a)| x \\
\Rightarrow & |\mathrm{f}(a)| x+|\mathrm{f}(b)| x=a|\mathrm{f}(b)|+b|\mathrm{f}(a)| \\
\Rightarrow & x(|\mathrm{f}(a)|+|\mathrm{f}(b)|)=a|\mathrm{f}(b)|+b|\mathrm{f}(a)| \\
\Rightarrow & x=\frac{a|\mathrm{f}(b)|+b|\mathrm{f}(a)|}{|\mathrm{f}(a)|+|\mathrm{f}(b)|} .
\end{aligned}
$$

3 Newton-Raphson

We take as a starting point

$$
y-\mathrm{f}(a)=\mathrm{f}^{\prime}(a)(x-a)
$$

Set $y=0$:

$$
\begin{aligned}
-\mathrm{f}(a)=\mathrm{f}^{\prime}(a)(x-a) & \Rightarrow x-a=-\frac{\mathrm{f}(a)}{\mathrm{f}^{\prime}(a)} \\
& \Rightarrow x=a-\frac{\mathrm{f}(a)}{\mathrm{f}^{\prime}(a)}
\end{aligned}
$$

That is, if a is an first approximation to a root of $\mathrm{f}(x)=0$, a better approximation is, in general,

$$
a-\frac{\mathrm{f}(a)}{\mathrm{f}^{\prime}(a)} ;
$$

i.e.,

$$
x_{n+1}=x_{n}-\frac{\mathrm{f}\left(x_{n}\right)}{\mathrm{f}^{\prime}\left(x_{n}\right)}
$$

4 Questions

1. Figure 1 shows part of the graph of $y=\mathrm{f}(x)$, where

$$
\mathrm{f}(x)=x \sin x+2 x-3 .
$$

Figure 1: $\mathrm{f}(x)=x \sin x+2 x-3$

The equation $\mathrm{f}(x)=0$ has a single root α.
(a) Taking $x_{1}=1$ as a first approximation to α, apply the Newton-Raphson procedure once to $\mathrm{f}(x)$ to find a second approximation to α, to 3 significant figures.
(b) Given $x_{1}=5$ as taken as a first approximation to α, apply the Newton-Raphson procedure,
(i) use Figure 1 to produce a rough sketch of $y=\mathrm{f}(x)$ for $3 \leqslant x \leqslant 6$
and by drawing suitable tangents, and without any further calculations,
(ii) show the approximate positions of x_{2} and x_{3}, the second and third approximations to α.
2.

$$
\mathrm{f}(x)=1-\mathrm{e}^{x}+3 \sin 2 x
$$

The equation $\mathrm{f}(x)=0$ has a root α in $1.0<x<1.4$.
(a) Starting with the interval $(1.0,1.4)$, use interval bisection three times to find of value of α to one decimal place.
(b) Taking your answer to part (a) as a first approximation to α, apply the NewtonRaphson procedure once to $\mathrm{f}(x)$ to find a second approximation to α.
(c) By considering the change in sign of $\mathrm{f}(x)$ over an appropriate interval, show your your to part (b) is accurate to 2 decimal places.
3.

$$
\mathrm{f}(x)=0.25 x-2+4 \sin \sqrt{x}
$$

(a) Show that the equation $\mathrm{f}(x)=0$ has a root α between $x=0.24$ and $x=0.28$.
(b) Starting with the interval [0.24, 0.28], use interval bisection three times to find an interval of width 0.005 which contains α.

The equation $\mathrm{f}(x)=0$ also has a root β between $x=10.75$ and $x=11.25$.
(c) Taking 11 as a first approximation to β, apply the Newton-Raphson procedure once to $\mathrm{f}(x)$ to find a second approximation to β. Give your answer to 2 decimal places.
4.

$$
\begin{equation*}
\mathrm{f}(x)=\ln x+x-3, x>0 \tag{3}
\end{equation*}
$$

(a) Find $\mathrm{f}(2.0)$ and $\mathrm{f}(2.5)$, each to 4 decimal places, and show that the root α of the equation $\mathrm{f}(x)=0$ satisfies $2.0<\alpha<2.5$.
(b) Use linear interpolation with your values of $f(2.0)$ and $f(2.5)$ to estimate α, giving your answer to 3 decimal places.
(c) Taking 2.25 as a first approximation to α, apply the Newton-Raphson process once to $\mathrm{f}(x)$ to find a second approximation to α, giving your answer to 3 decimal places.
(d) Show that your answer in part (d) gives α correct to 3 decimal places.
5.

$$
\mathrm{f}(x)=x^{3}+8 x-19
$$

(a) Show that the equation $\mathrm{f}(x)=0$ has only one real root.
(b) Show that the equation $\mathrm{f}(x)=0$ lies between 1 and 2 .
(c) Obtain an approximation to the real root of $\mathrm{f}(x)=0$ by performing two applications of Newton-Raphson procedure tof (x), using $x=2$ as the first approximation. Give your answer to 3 decimal places.
(d) By considering the change in sign of $\mathrm{f}(x)$ over an appropriate interval, show that your answer to part (c) is accurate to 3 decimal places.
6.

$$
\mathrm{f}(x)=3 x^{2}+x-\tan \left(\frac{x}{2}\right)-2,-\pi<x<\pi
$$

The equation $\mathrm{f}(x)=0$ has a root α in the interval $[0.7,0.8]$.
(a) Use linear interpolation, on the values at the end points of this interval, to obtain an approximation to α. Give your answer to 3 decimal places.
(b) Taking 0.75 as a first approximation to α, apply the Newton-Raphson process once to $\mathrm{f}(x)$ to find a second approximation to α. Give your answer to 3 decimal places.
7.

$$
\begin{equation*}
\mathrm{f}(x)=4 \cos x+\mathrm{e}^{-x} \tag{2}
\end{equation*}
$$

(a) Show that the equation $\mathrm{f}(x)=0$ has a root α between 1.6 and 1.7.
(b) Taking 1.6 as a first approximation to α, apply the Newton-Raphson process once to $\mathrm{f}(x)$ to find a second approximation to α. Give your answer to 3 significant figures.
8.

$$
\mathrm{f}(x)=3 \sqrt{x}+\frac{18}{\sqrt{x}}-20
$$

(a) Show that the equation $\mathrm{f}(x)=0$ has a root α between [1.1,1.2].
(b) Find $\mathrm{f}^{\prime}(x)$.
(c) Using $x_{0}=1.1$ as a first approximation to α, apply the Newton-Raphson process once to $\mathrm{f}(x)$ to find a second approximation to α, giving your answer to 3 significant figures.
9. Figure 2 shows part of the curve with equation $y=\mathrm{f}(x)$, where

$$
\mathrm{f}(x)=1-x-\sin \left(x^{2}\right)
$$

Figure 2: $\mathrm{f}(x)=1-x-\sin \left(x^{2}\right)$

The point A, with x-coordinate p, is a stationary point on the curve. The equation $\mathrm{f}(x)=0$ has a root α in the interval $0.6<\alpha<0.7$.
(a) Explain why $x_{0}=p$ is not suitable to use as a first approximation to α when applying the Newton-Raphson process to $\mathrm{f}(x)$.
(b) Using $x_{0}=0.6$ as a first approximation to α, apply the Newton-Raphson process once to $\mathrm{f}(x)$ to find a second approximation to α, giving your answer to 3 decimal places.
(c) By considering the change in sign of $\mathrm{f}(x)$ over an appropriate interval, show your your to part (b) is accurate to 3 decimal places.
10. Given that α is the only real root of the equation

$$
\sin 2 x-\ln 3 x=0,
$$

(a) show that $0.8<\alpha<0.9$.
(b) Taking 0.9 as a first approximation to α, apply the Newton-Raphson process once to $\mathrm{f}(x)$ to find a second approximation to α, giving your answer to 3 decimal places.
(c) Use linear interpolation once on the interval $[0.8,0.9]$ to find another approximation to α, giving your answer to 3 decimal places.
11. Given that α is the only real root of the equation

$$
\begin{equation*}
x^{3}-x^{2}-6=0 \tag{2}
\end{equation*}
$$

(a) show that $2.2<\alpha<2.3$.
(b) Taking 2.2 as a first approximation to α, apply the Newton-Raphson process once to $\mathrm{f}(x)$ to find a second approximation to α, giving your answer to 3 decimal places.
(c) Use linear interpolation once on the interval [2.2,2.3] to find another approximation to α, giving your answer to 3 decimal places.
12.

$$
\begin{equation*}
\mathrm{f}(x)=x \cos x-2 x+5 \tag{2}
\end{equation*}
$$

(a) Show that $\mathrm{f}(x)=0$ has a root α in the interval $[2,2.1]$.
(b) Taking 2 as a first approximation to α, apply the Newton-Raphson process once to $\mathrm{f}(x)$ to find a second approximation to α, giving your answer to 2 decimal places.
(c) Show that your answer to part (b) gives α to 2 decimal places.
13.

$$
\begin{equation*}
\mathrm{f}(x)=3 x^{2}-\frac{11}{x^{2}} \tag{1}
\end{equation*}
$$

(a) Write down, to 3 decimal places, the value of $f(1.3)$ and the value of $f(1.4)$.

The equation $\mathrm{f}(x)=0$ has a root α between 1.3 and 1.4.
(b) Starting with the interval [1.3, 1.4], use interval bisection three times to find an interval of width 0.025 which contains α.
(c) Taking 1.4 as a first approximation to α, apply the Newton-Raphson process once to $\mathrm{f}(x)$ to find a second approximation to α, giving your answer to 3 decimal places.
14.

$$
\begin{equation*}
\mathrm{f}(x)=x^{3}-\frac{7}{x}+2, x>0 \tag{2}
\end{equation*}
$$

(a) Show that the equation $\mathrm{f}(x)=0$ has a root α between 1.4 and 1.5.
(b) Starting with the interval $[1.4,1.5]$, use interval bisection three times to find an interval of width 0.025 which contains α.
(c) Taking 1.45 as a first approximation to α, apply the Newton-Raphson process once to

$$
\mathrm{f}(x)=x^{3}-\frac{7}{x}+2
$$

to find a second approximation to α, giving your answer to 3 decimal places.
15.

$$
\mathrm{f}(x)=5 x^{2}-4 x^{\frac{3}{2}}-6, x \geqslant 0
$$

The root α the equation $\mathrm{f}(x)=0$ lies in the interval $[1.6,1.8]$.
(a) Use linear interpolation once on the interval $[1.6,1.8]$ to find to approximation to α. Give your answer to 3 decimal places.
(b) Differentiate $\mathrm{f}(x)$ to find $\mathrm{f}^{\prime}(x)$.
(c) Taking 1.7 as a first approximation to α, apply the Newton-Raphson process once to $\mathrm{f}(x)$ to find a second approximation to α. Give your answer to 3 decimal places.
16.

$$
\begin{equation*}
\mathrm{f}(x)=3^{x}+3 x-7 \tag{2}
\end{equation*}
$$

(a) Show that $\mathrm{f}(x)=0$ has a root α between $x=1$ and $x=2$.
(b) Starting with the interval [1, 2], use interval bisection three times to find an interval of width 0.25 which contains α.
17.

$$
\begin{equation*}
\mathrm{f}(x)=x^{2}+\frac{5}{2 x}-3 x-1, x \neq 0 \tag{2}
\end{equation*}
$$

(a) Differentiate $\mathrm{f}(x)$ to find $\mathrm{f}^{\prime}(x)$.

The root α the equation $\mathrm{f}(x)=0$ lies in the interval $[0.7,0.9$.
(b) Taking 0.8 as a first approximation to α, apply the Newton-Raphson process once to $\mathrm{f}(x)$ to find a second approximation to α. Give your answer to 3 decimal places.
18. (a) Show that $\mathrm{f}(x)=x^{4}+x-1$ has a real root α in the interval $[0.5,1.0]$.
(b) Starting with the interval $[0.5,1.0]$, use interval bisection three times to find an interval of width 0.125 which contains α.
(c) Taking 0.75 as a first approximation to α, apply the Newton-Raphson process once to $\mathrm{f}(x)$ to find a second approximation to α. Give your answer to 3 decimal places.
19.

$$
\begin{equation*}
\mathrm{f}(x)=x^{2}+\frac{3}{4 \sqrt{x}}-3 x-7, x>0 \tag{6}
\end{equation*}
$$

The root α the equation $\mathrm{f}(x)=0$ lies in the interval $[3,5]$.
Taking 4 as a first approximation to α, apply the Newton-Raphson process once to $\mathrm{f}(x)$ to find a second approximation to α. Give your answer to 2 decimal places.
20.

$$
\begin{equation*}
\mathrm{f}(x)=\tan \left(\frac{x}{2}\right)+3 x-6,-\pi<x<\pi . \tag{2}
\end{equation*}
$$

(a) Show that $\mathrm{f}(x)=0$ has a root α in the interval $[1,2]$.
(b) Use linear interpolation once on the interval [2.2,2.3] to find another approximation to α, giving your answer to 3 decimal places.
21.

$$
\begin{equation*}
\mathrm{f}(x)=2 x^{\frac{1}{2}}+x^{-\frac{1}{2}}-5, x>0 \tag{2}
\end{equation*}
$$

(a) Find $\mathrm{f}^{\prime}(x)$.

The equation $\mathrm{f}(x)=0$ has a root α in the interval [4.5, 5.5].
(b) Using $x_{0}=5$ as a first approximation to α, apply the Newton-Raphson process once to $\mathrm{f}(x)$ to find a second approximation to α, giving your answer to 3 significant figures.
22.

$$
\mathrm{f}(x)=\cos \left(x^{2}\right)-x+3,0<x<\pi .
$$

(a) Show that the equation $\mathrm{f}(x)=0$ has a root α in the interval $[2.5,3]$.
(b) Use linear interpolation once on the interval $[2.5,3]$ to find to approximation to α, giving your answer to 2 decimal places.
23.

$$
\begin{equation*}
f(x)=\frac{1}{2} x^{4}-x^{3}+x-3 \tag{2}
\end{equation*}
$$

(a) Show that $\mathrm{f}(x)=0$ has a root α in the interval $x=2$ and $x=2.5$.
(b) Starting with the interval [2,2.5], use interval bisection twice to find an interval of width 0.125 which contains α.

The equation $\mathrm{f}(x)=0$ has a root β in the interval $[-2,-1]$.
(c) Taking -1.5 as a first approximation to β, apply the Newton-Raphson process once to $\mathrm{f}(x)$ to find a second approximation to β. Give your answer to 2 decimal places.
24.

$$
\begin{equation*}
\mathrm{f}(x)=x^{3}-\frac{5}{2 x^{\frac{3}{2}}}+2 x-3, x>0 \tag{2}
\end{equation*}
$$

(a) Show that $\mathrm{f}(x)=0$ has a root α in the interval $[1.1,1.5]$.
(b) Find $\mathrm{f}^{\prime}(x)$.
(c) Using $x_{0}=1.1$ as a first approximation to α, apply the Newton-Raphson process once to $\mathrm{f}(x)$ to find a second approximation to α, giving your answer to 3 decimal places.
25.

$$
\begin{equation*}
\mathrm{f}(x)=3 \cos 2 x+x-2,-\pi \leqslant x \leqslant \pi . \tag{2}
\end{equation*}
$$

(a) Show that $\mathrm{f}(x)=0$ has a root α in the interval $[2,3]$.
(b) Use linear interpolation once on the interval $[2,3]$ to find to approximation to α. Give your answer to 3 decimal places.
(c) The equation $\mathrm{f}(x)=0$ has a root β in the interval $[-1,-0]$. Starting with the interval $[-1,0]$, use interval bisection to find an interval of width 0.25 which contains β.
26. In the interval $13<x<14$, the equation

$$
3+x \sin \left(\frac{x}{4}\right)=0
$$

where x is measured in radians, has exactly one root.
(a) Starting with the interval $[13,14]$, use interval bisection twice to find an interval of width 0.25 which contains α.
(b) Use linear interpolation once on the interval $[2,3]$ to find to approximation to α. Give your answer to 3 decimal places.
27.

$$
\begin{equation*}
f(x)=3 x^{\frac{3}{2}}-25 x^{-\frac{1}{2}}-125, x>0 \tag{2}
\end{equation*}
$$

(a) Find $\mathrm{f}^{\prime}(x)$.

The equation $\mathrm{f}(x)=0$ has a root α in the interval $[12,13]$.
(b) Using $x_{0}=12.5$ as a first approximation to α, apply the Newton-Raphson process once to $\mathrm{f}(x)$ to find a second approximation to α, giving your answer to 3 decimal places.
28.

$$
\begin{equation*}
f(x)=\frac{1}{3} x^{2}+\frac{4}{x^{2}}-2 x-1, x>0 \tag{2}
\end{equation*}
$$

(a) Show that the equation $\mathrm{f}(x)=0$ has a root α in the interval $[6,7]$.
(b) Taking 6 as a first approximation to α, apply the Newton-Raphson process once to $\mathrm{f}(x)$ to obtain a second approximation to α. Give your answer to 2 decimal places.

