Dr Oliver Mathematics Worked Examples Expansion 1

From: AQA Further Mathematics Level 2 2019 Paper 2 Q17

1. Show that

$$(x+1)(x+3)(x+4) - x(x^2 + 7x + 11)$$

can be written in the form

(x+a)(x+b),

(5)

where a and b are positive integers.

Solution	
Let us proceed in order:	Dr Oliver
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
SO	$(x+1)(x+3) = x^2 + 4x + 3$
and	$\times \mid x^2 + 4x + 3$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
so $(x^2 + 4)$	$(x+3)(x+4) = x^3 + 8x^2 + 19x + 12.$
Finally,	Nathematics
$(x) = (x^3)$ $= x^2 + x^2$	$ + 1)(x + 3)(x + 4) - x(x^{2} + 7x + 11) + 8x^{2} + 19x + 12) - (x^{3} + 7x^{2} + 11x) + 8x + 12 $

we can now factorise the quadratic:

add to:
$$+8$$

multiply to: $+12$ $+6$, $+2$

$$= \underline{(x+6)(x+2)};$$

hence,

 $\underline{a=6}$ and $\underline{b=2}$

(or vice versa!).

