Dr Oliver Mathematics Worked Examples
 Circles and Sectors 1

From: Edexcel 2020 June Paper 1H (Non-Calculator)

1. The diagram shows two shaded shapes, \mathbf{A} and \mathbf{B}.

Shape \mathbf{A} is formed by removing a sector of a circle with radius $(3 x-1) \mathrm{cm}$ from a sector of the circle with radius $(5 x-1) \mathrm{cm}$.
Shape \mathbf{B} is a circle of diameter $(2-2 x) \mathrm{cm}$.

The area of shape \mathbf{A} is equal to the area of shape \mathbf{B}.
Find the value of x.
You must show all your working.

Solution	Shape $\mathbf{A}=\frac{45}{360}$			
Shape A:				
			(1	-
		\times	$5 x$	-1
		$5 x$ -1	$\begin{gathered} 25 x^{2} \\ -5 x \end{gathered}$	$\begin{gathered} -5 x \\ +1 \end{gathered}$

$$
\begin{aligned}
& \begin{array}{l|cc}
\hline \times & 3 x & -1 \\
\hline 3 x & 9 x^{2} & -3 x \\
-1 & -3 x & +1 \\
\hline
\end{array} \\
& =\frac{45}{360} \times \pi \times\left[\left(25 x^{2}-10 x+1\right)-\left(9 x^{2}-6 x+1\right)\right] \\
& =\frac{45}{360} \times \pi \times\left(16 x^{2}-4 x\right) \\
& =\frac{1}{8}\left(16 x^{2}-4 x\right) \pi
\end{aligned}
$$

Shape B:

$$
\text { Shape } \mathbf{B}=\pi(1-x)^{2}
$$

Comparing:
Now,

$$
\begin{aligned}
\frac{1}{8}\left(16 x^{2}-4 x\right) \pi=(1-x)^{2} \pi & \Rightarrow 16 x^{2}-4 x=8\left(1-2 x+x^{2}\right) \\
& \Rightarrow 16 x^{2}-4 x=8-16 x+8 x^{2} \\
& \Rightarrow 8 x^{2}+12 x-8=0 \\
& \Rightarrow 4\left(2 x^{2}+3 x-2\right)=0
\end{aligned}
$$

$\left.\begin{array}{lc}\text { add to: } & +3 \\ \text { multiply to: } & (+2) \times(-2)=-4\end{array}\right\}+4,-1$

$$
\begin{aligned}
& \Rightarrow 4\left[2 x^{2}+4 x-x-2\right]=0 \\
& \Rightarrow 4[2 x(x+2)-1(x+2)]=0 \\
& \Rightarrow 4(2 x-1)(x+2)=0 \\
& \Rightarrow 2 x-1=0 \text { or } x+2=0 \\
& \Rightarrow x=\frac{1}{2} \text { or } x=-2
\end{aligned}
$$

but $x \neq-2$ (why?). Hence, $x=\frac{1}{2}$.

