Dr Oliver Mathematics Further Mathematics Further Vectors Past Examination Questions

This booklet consists of 26 questions across a variety of examination topics. The total number of marks available is 250.

1. The points A, B, and C lie on the plane Π and, relative to a fixed origin O, they have position vectors

$$\mathbf{a} = 3\mathbf{i} - \mathbf{j} + 4\mathbf{k}, \ \mathbf{b} = -\mathbf{i} + 2\mathbf{j}, \ \text{and} \ \mathbf{c} = 5\mathbf{i} - 3\mathbf{j} + 7\mathbf{k},$$

respectively.

(a) Find $\overrightarrow{AB} \times \overrightarrow{AC}$.

Solution

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -4 & 3 & -4 \\ 2 & -2 & 3 \end{vmatrix} = (9-8)\mathbf{i} - (-12+8)\mathbf{j} + (8-6)\mathbf{k}$$
$$= \mathbf{i} + 4\mathbf{j} + 2\mathbf{k}.$$

(2)

(4)

(b) Find an equation of Π in the form $\mathbf{r}.\mathbf{n} = p$.

Solution

$$\mathbf{r.n} = (\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}).(3\mathbf{i} - \mathbf{j} + 4\mathbf{k})$$
$$= 3 - 4 + 8$$
$$= \underline{7}.$$

The point D has position vector $5\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$.

(c) Calculate the volume of the tetrahedron ABCD.

$$\begin{vmatrix} 2 & 3 & -1 \\ -4 & 3 & -4 \\ 2 & -2 & 3 \end{vmatrix} = 2(9-8) - 3(-12+8) - (8-6)$$
$$= 2 + 12 - 2$$
$$= 12$$

and

volume of the tetrahedron = $\frac{1}{6} |\mathbf{a}.(\mathbf{b} \times \mathbf{c})| = \frac{1}{6} \times 12 = \frac{2}{6}$.

2. (a) Explain why, for any two vectors \mathbf{a} and \mathbf{a} , $\mathbf{a}.\mathbf{b} \times \mathbf{a} = 0$.

(2)

(2)

Solution

It is because there is 90° between **a** and **b** \times **a** and

$$\mathbf{a}.(\mathbf{b} \times \mathbf{a}) = |\mathbf{a}||\mathbf{b} \times \mathbf{a}|\cos 90^{\circ} = \underline{0}.$$

(b) Given vectors \mathbf{a} , \mathbf{b} , and \mathbf{c} such that $\mathbf{a} \times \mathbf{b} = \mathbf{a} \times \mathbf{c}$, where $\mathbf{a} \neq \mathbf{0}$ and $\mathbf{b} \neq \mathbf{c}$, show that

$$\mathbf{b} - \mathbf{c} = \lambda \mathbf{a}$$
,

where λ is a scalar.

Solution

$$\mathbf{a} \times \mathbf{b} = \mathbf{a} \times \mathbf{c} \Rightarrow \mathbf{a} \times \mathbf{b} - \mathbf{a} \times \mathbf{c} = 0$$

$$\Rightarrow \mathbf{a} \times (\mathbf{b} - \mathbf{c}) = 0;$$

as $\mathbf{a} \neq \mathbf{0}$ and $\mathbf{b} \neq \mathbf{c}$, \mathbf{a} is parallel to $\mathbf{b} - \mathbf{c}$ and so

$$\mathbf{b} - \mathbf{c} = \underline{\lambda} \mathbf{a},$$

where λ is a scalar.

3. The line l_1 has equation

$$\mathbf{r} = \mathbf{i} + 6\mathbf{j} - \mathbf{k} + \lambda(2\mathbf{i} + 3\mathbf{k})$$

and the line l_2 has equation

$$\mathbf{r} = 3\mathbf{i} + p\mathbf{j} + \mu(\mathbf{i} - 2\mathbf{j} + \mathbf{k}),$$

where p is a constant. The plane Π_1 contains l_1 and l_2 .

(a) Find a vector which is normal to Π_1 .

(2)

Solution

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 0 & 3 \\ 1 & -2 & 1 \end{vmatrix} = (0+6)\mathbf{i} - (2-3)\mathbf{j} + (-4-0)\mathbf{k}$$
$$= 6\mathbf{i} + \mathbf{j} - 4\mathbf{k}.$$

(b) Show that an equation for Π_1 is 6x + y - 4z = 16.

(2)

Solution

$$\mathbf{r}.(6\mathbf{i} + \mathbf{j} - 4\mathbf{k}) = (\mathbf{i} + 6\mathbf{j} - \mathbf{k}).(6\mathbf{i} + \mathbf{j} - 4\mathbf{k})$$

$$\Rightarrow 6x + y - 4z = 6 + 6 + 4$$

$$\Rightarrow 6x + y - 4z = 16,$$

as required.

(c) Find the value of p.

(1)

Solution

$$\underline{p=-2}$$
.

The plane Π_2 has equation $\mathbf{r} \cdot (\mathbf{i} + 2\mathbf{j} + \mathbf{k}) = 2$.

(d) Find an equation for the line of intersection of Π_1 and Π_2 , giving your answer in the form

$$(\mathbf{r} - \mathbf{a}) \times \mathbf{b} = \mathbf{0}.$$

Solution

Well, the direction of this line is perpendicular to both normals and this is

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 6 & 1 & -4 \\ 1 & 2 & 1 \end{vmatrix} = (1+8)\mathbf{i} - (6+4)\mathbf{j} + (12-1)\mathbf{k}$$
$$= 9\mathbf{i} - 10\mathbf{j} + 11\mathbf{k}.$$

Now, the two lines are

$$6x + y - 4z = 16$$
 and $x + 2y + z = 2$;

put z = 0:

$$6x + y = 16, x + 2y = 2$$

$$\Rightarrow 6x + y = 16, 6x + 12y = 12$$

$$\Rightarrow -11y = 4$$

$$\Rightarrow y = -\frac{4}{11}$$

$$\Rightarrow x = \frac{30}{11}.$$

Hence, we have

$$\underbrace{\left[\mathbf{r} - \left(\frac{30}{11}\mathbf{i} - \frac{4}{11}\mathbf{j}\right)\right] \times \left(9\mathbf{i} - 10\mathbf{j} + 11\mathbf{k}\right) = \mathbf{0}}_{}.$$

4. The plane Π passes through the points

$$P(-1,3,-2), Q(4,-1,-1), \text{ and } R(3,0,c),$$

where c is a constant.

(a) Find, in terms of c, $\overrightarrow{RP} \times \overrightarrow{RQ}$.

La Oliver

Solution

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -4 & 3 & -2 - c \\ 1 & -1 & -1 - c \end{vmatrix}$$

$$= [3(-1-c) + (-2-c)]\mathbf{i} - [-4(-1-c) - (-2-c)]\mathbf{j} + [4-3]\mathbf{k}$$

$$= (-3 - 3c - 2 - c)\mathbf{i} - (4 + 4c + 2 + c)\mathbf{j} + \mathbf{k}$$

$$= (-5 - 4c)\mathbf{i} - (6 + 5c)\mathbf{j} + \mathbf{k}.$$

Given that $\overrightarrow{RP} \times \overrightarrow{RQ} = 3\mathbf{i} + d\mathbf{j} + \mathbf{k}$, where d is a constant,

(b) find the value of c and show that d = 4,

(2)

(3)

$$-5 - 4c = 3 \Rightarrow 4c = -8 \Rightarrow \underline{c} = -2$$

and

$$d = -6 - 5 \times (-2) = -6 + 10 = \underline{4}.$$

(c) find an equation of Π in the form $\mathbf{r}.\mathbf{n} = p$, where p is a constant.

(3)

Solution

$$\mathbf{r}.(3\mathbf{i} + 4\mathbf{j} + \mathbf{k}) = (3\mathbf{i} + 4\mathbf{j} + \mathbf{k}).(-\mathbf{i} + 3\mathbf{j} - 2\mathbf{k})$$
$$= -3 + 12 - 2$$
$$= \underline{7}.$$

The point S has position vector $\mathbf{i} + 5\mathbf{j} + 10\mathbf{k}$. The point S' is the image of S under reflection in Π .

(d) Find the position vector of S'.

(5)

(4)

Solution

The equation of normal to plane through S is

$$\mathbf{r} = (\mathbf{i} + 5\mathbf{j} + 10\mathbf{k}) + t(3\mathbf{i} + 4\mathbf{j} + \mathbf{k}).$$

We need to determine where the plane and the equation of normal meets:

$$[(1+3t)\mathbf{i} + (5+4t)\mathbf{j} + (10+t)\mathbf{k}].(3\mathbf{i} + 4\mathbf{j} + \mathbf{k}) = 7$$

$$\Rightarrow 3(1+3t) + 4(5+4t) + (10+t) = 7$$

$$\Rightarrow 3+9t+20+16t+10+t=7$$

$$\Rightarrow 26t = -26$$

$$\Rightarrow t = -1,$$

and S' has position vector

$$(\mathbf{i} + 5\mathbf{j} + 10\mathbf{k}) - 2(3\mathbf{i} + 4\mathbf{j} + \mathbf{k}) = -5\mathbf{i} - 3\mathbf{j} + 8\mathbf{k}.$$

5. The points A, B, and C lie on the plane Π_1 and, relative to a fixed origin O, they have position vectors

$$\mathbf{a} = \mathbf{i} + 3\mathbf{j} - \mathbf{k}$$
, $\mathbf{b} = 3\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}$, and $\mathbf{c} = 5\mathbf{i} - 2\mathbf{j} - 2\mathbf{k}$.

(a) Find
$$(\mathbf{b} - \mathbf{a}) \times (\mathbf{c} - \mathbf{a})$$
.

Solution

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 0 & -3 \\ 4 & -5 & -1 \end{vmatrix} = (0 - 15)\mathbf{i} - (-2 + 12)\mathbf{j} + (-10 - 0)\mathbf{k}$$
$$= -15\mathbf{i} - 10\mathbf{j} - 10\mathbf{k}.$$

(b) Find an equation for Π_1 , giving your answer in the form $\mathbf{r}.\mathbf{n} = p$.

(2)

Solution

$$\mathbf{r}.(3\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}) = (3\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}).(\mathbf{i} + 3\mathbf{j} - \mathbf{k})$$
$$= 3 + 6 - 2$$
$$= \underline{7}.$$

The plane Π_2 has cartesian equation x + z = 3 and Π_1 and Π_2 intersect in the line l.

(c) Find an equation for l, giving your answer in the form $(\mathbf{r} - \mathbf{p}) \times \mathbf{q} = \mathbf{0}$.

(4)

Solution

 Π_1 has equation

$$3x + 2y + 2z = 7.$$

If we let $x = \lambda$,

$$x = 3 - z \Rightarrow 2y = 7 - 3x - 2z$$

$$\Rightarrow 2y = 7 - 3\lambda - 2(3 - \lambda)$$

$$\Rightarrow 2y = 7 - 3\lambda - 6 + 2\lambda$$

$$\Rightarrow 2y = 1 - \lambda$$

$$\Rightarrow y = \frac{1}{2} - \frac{1}{2}\lambda.$$

The general cartesian equation

$$\lambda = \frac{x}{1} = \frac{y - \frac{1}{2}}{-\frac{1}{2}} = \frac{z - 3}{-1}$$

and an equation for l is

$$[\mathbf{r} - (\frac{1}{2}\mathbf{j} + 3\mathbf{k})] \times (\mathbf{i} - \frac{1}{2}\mathbf{j} - \mathbf{k}) = \mathbf{0}.$$

The point P is the point on l that is the nearest to the origin O.

(d) Find the coordinates of P.

(4)

(4)

(2)

Solution

$$\begin{aligned} & \left[\lambda\mathbf{i} + \left(\frac{1}{2} - \frac{1}{2}\lambda\right)\mathbf{j} + (3 - \lambda)\mathbf{k}\right].(\mathbf{i} - \frac{1}{2}\mathbf{j} - \mathbf{k}) = 0 \\ \Rightarrow & \lambda - \frac{1}{2}\left(\frac{1}{2} - \frac{1}{2}\lambda\right) - (3 - \lambda) = 0 \\ \Rightarrow & \lambda - \frac{1}{4} + \frac{1}{4}\lambda - 3 + \lambda = 0 \\ \Rightarrow & \frac{9}{4}\lambda = \frac{13}{4} \\ \Rightarrow & \lambda = \frac{13}{9} \\ \Rightarrow & \underline{P\left(\frac{13}{9}, -\frac{2}{9}, \frac{14}{9}\right)}. \end{aligned}$$

6. The points A, B, and C have position vectors, relative to a fixed origin O,

$$\mathbf{a} = 2\mathbf{i} - \mathbf{j},$$

 $\mathbf{b} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}, \text{ and }$
 $\mathbf{c} = 2\mathbf{i} + 3\mathbf{j} + 2\mathbf{k},$

respectively. The plane Π passes through A, B, and C.

(a) Find $\overrightarrow{AB} \times \overrightarrow{AC}$.

Solution

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 3 & 3 \\ 0 & 4 & 2 \end{vmatrix} = (6 - 12)\mathbf{i} - (-2 - 0)\mathbf{j} + (-4 - 0)\mathbf{k}$$
$$= \underline{-6\mathbf{i} + 2\mathbf{j} - 4\mathbf{k}}.$$

(b) Show that a cartesian equation of Π is 3x - y + 2z = 7.

$$\mathbf{r}.(-6\mathbf{i} + 2\mathbf{j} - 4\mathbf{k}) = (2\mathbf{i} - \mathbf{j}).(-6\mathbf{i} + 2\mathbf{j} - 4\mathbf{k})$$

$$\Rightarrow -6x + 2y - 4z = -12 - 2 + 0$$

$$\Rightarrow -6x + 2y - 4z = -14$$

$$\Rightarrow \underline{3x - y + 2z = 7}.$$

The line l has equation

$$(\mathbf{r} - 5\mathbf{i} - 5\mathbf{j} - 3\mathbf{k}) \times (2\mathbf{i} - \mathbf{j} - 2\mathbf{k}) = \mathbf{0}.$$

The line l and the plane Π intersect at the point T.

(c) Find the coordinates of T.

(5)

Solution

$$\mathbf{r} = (5 + 2\lambda)\mathbf{i} + (5 - \lambda)\mathbf{j} + (3 - 2\lambda)\mathbf{k}$$

and so

$$3(5+2\lambda) - (5-\lambda) + 2(3-2\lambda) = 7 \Rightarrow 15+6\lambda-5+\lambda+6-4\lambda = 7$$
$$\Rightarrow 3\lambda = -9$$
$$\Rightarrow \lambda = -3$$
$$\Rightarrow \underline{T(-1,8,9)}.$$

(d) Show that A, B, and T lie on the same straight line.

(3)

Solution

$$\overrightarrow{AT} = -3\mathbf{i} + 9\mathbf{j} + 9\mathbf{k}$$

$$= \frac{3}{2}(-2\mathbf{i} + 6\mathbf{j} + 6\mathbf{k})$$

$$= \frac{3}{2}\overrightarrow{BT};$$

thus, A, B, and T are collinear.

7. Figure 1 shows a pyramid PQRST with base PQRS.

Figure 1: a pyramid PQRST

The coordinates of P, Q, and R are P(1,0,-1), Q(2,-1,1), and R(3,-3,2). Find

(a) Find $\overrightarrow{PQ} \times \overrightarrow{PR}$.

Solution

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -1 & 2 \\ 2 & -3 & 3 \end{vmatrix} = (-3+6)\mathbf{i} - (3-4)\mathbf{j} + (-3+2)\mathbf{k}$$
$$= 3\mathbf{i} + \mathbf{j} - \mathbf{k}.$$

(b) a vector equation for the plane containing the face PQRS, giving your answer in the form $\mathbf{r.n} = d$.

Solution

$$\mathbf{r}.(3\mathbf{i} + \mathbf{j} - \mathbf{k}) = (\mathbf{i} - \mathbf{k}).(3\mathbf{i} + \mathbf{j} - \mathbf{k})$$
$$= 3 + 0 + 1$$
$$= \underline{4}.$$

The plane Π contains the face PST. The vector equation of Π is $\mathbf{r} \cdot (\mathbf{i} - 2\mathbf{j} - 5\mathbf{k}) = 6$.

(c) Find cartesian equations of the line through P and S.

Solution

$$3x + y - z = 4$$
 and $x - 2y - 5z = 6$.

(5)

Use 2 times the first equation — 6x + 2y - 2z = 8 — and add that to the second equation:

$$7x - 7z = 14 \Rightarrow z = x - 2$$

$$\Rightarrow (z + 2) - 2y - 5z = 6$$

$$\Rightarrow 2y + 4 = -4z$$

$$\Rightarrow z = \frac{y + 2}{-2};$$

hence, the line is

$$\frac{x-2}{1} = \frac{y+2}{-2} = \frac{z}{1}.$$

(d) Hence show that PS is parallel to QR.

(2)

Solution

The direction is $\overrightarrow{PS} = \mathbf{i} - 2\mathbf{j} + \mathbf{k}$. Now, $\overrightarrow{QR} = \mathbf{i} - 2\mathbf{j} + \mathbf{k}$ which means \underline{PS} and \underline{QR} are parallel.

Given that PQRS is a parallelogram and that T has coordinates (5, 2, -1),

(e) find the volume of the pyramid PQRST.

(3)

Solution

$$\overrightarrow{PT} = 4\mathbf{i} + 2\mathbf{j}$$
 and

volume of the solid =
$$\frac{1}{3} \left| \overrightarrow{PT} \cdot (\overrightarrow{PQ} \times \overrightarrow{PR}) \right|$$

= $\frac{1}{3} \left| (4\mathbf{i} + 2\mathbf{j}) \cdot (3\mathbf{i} + \mathbf{j} - \mathbf{k}) \right|$
= $\frac{1}{3} \left| 12 + 2 + 0 \right|$
= $\frac{14}{3}$.

8. The points A, B, and C have position vectors \mathbf{a} , \mathbf{b} , and \mathbf{c} respectively, relative to a fixed origin O, as shown in Figure 2.

Figure 2: the points A, B, and C

It is given that

$$\mathbf{a} = \mathbf{i} + \mathbf{j}, \ \mathbf{b} = 3\mathbf{i} - \mathbf{j} + \mathbf{k}, \ \text{and} \ \mathbf{c} = 2\mathbf{i} + \mathbf{j} - \mathbf{k}.$$

Calculate

(a) $\mathbf{b} \times \mathbf{c}$,

(3)

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & -1 & 1 \\ 2 & 1 & -1 \end{vmatrix} = (1-1)\mathbf{i} - (-3-2)\mathbf{j} + (3+2)\mathbf{k}$$
$$= \underline{5\mathbf{j} + 5\mathbf{k}}.$$

(b) $\mathbf{a}.(\mathbf{b}\times\mathbf{c}),$

Solution

$$(\mathbf{i} + \mathbf{j}).(5\mathbf{j} + 5\mathbf{k}) = 0 + 5 + 0 = \underline{5}.$$

(2)

(1)

(c) the area of triangle OBC,

Solution

area of the triangle =
$$\frac{1}{2} |\mathbf{b} \times \mathbf{c}|$$

= $\frac{1}{2} \times \sqrt{5^2 + 5^2}$
= $\frac{5}{2}\sqrt{2}$.

(d) the volume of the tetrahedron OABC.

Solution

Volume of the tetrahedron =
$$\frac{1}{6} |\mathbf{a}.(\mathbf{b} \times \mathbf{c})|$$

= $\frac{1}{6} \times 5$
= $\frac{5}{\underline{6}}$.

9. The lines l_1 and l_2 have equations

$$\mathbf{r} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 3 \\ 4 \end{pmatrix} \text{ and } \mathbf{r} = \begin{pmatrix} \alpha \\ -4 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 0 \\ 3 \\ 2 \end{pmatrix}.$$

If the lines l_1 and l_2 interest,

(a) the value of α , (4)

Solution

 $\mathbf{j}: -1 + 3\lambda = -4 + 3\mu$

 $\mathbf{k}: 2+4\lambda=2\mu.$

Now,

$$2 + 4\lambda = 2\mu \Rightarrow 1 + 2\lambda = \mu$$

$$\Rightarrow -1 + 3\lambda = -4 + 3(1 + 2\lambda)$$

$$\Rightarrow -1 + 3\lambda = -4 + 3 + 6\lambda$$

$$\Rightarrow 3\lambda = 0$$

$$\Rightarrow \lambda = 0$$

$$\Rightarrow \alpha = 1.$$

(b) an equation for the plane containing the lines l_1 and l_2 , giving your answer in the form ax + by + cz + d = 0, where a, b, c, and d are constants.

(4)

(3)

Solution

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 3 & 4 \\ 0 & 3 & 2 \end{vmatrix} = (6 - 12)\mathbf{i} - (-2 - 0)\mathbf{j} + (-3 - 0)\mathbf{k}$$
$$= -6\mathbf{i} + 2\mathbf{i} - 3\mathbf{k}$$

The plane has equation

$$\mathbf{r}.(-6\mathbf{i} + 2\mathbf{j} - 3\mathbf{k}) = (\mathbf{i} - \mathbf{j} + 2\mathbf{k}).(-6\mathbf{i} + 2\mathbf{j} - 3\mathbf{k})$$

$$\Rightarrow -6x + 2y - 3z = -6 - 2 - 6$$

$$\Rightarrow \underline{6x - 2y + 3z - 14} = \underline{0}.$$

For other values of α , the lines l_1 and l_2 do not intersect and are skew lines. Given that $\alpha = 2$,

(c) find the shortest distance between the lines l_1 and l_2 .

Shortest distance =
$$\frac{\left| (\mathbf{i} - 3\mathbf{j} - 2\mathbf{k}) \cdot (-6\mathbf{i} + 2\mathbf{j} - 3\mathbf{k}) \right|}{\left| -6\mathbf{i} + 2\mathbf{j} - 3\mathbf{k} \right|}$$

$$= \left| \frac{-6 - 6 + 6}{\sqrt{6^2 + 2^2 + 3^2}} \right|$$

$$= \frac{6}{7}.$$

10. Given that

$$\mathbf{a} = \mathbf{i} + 7\mathbf{j} + 9\mathbf{k} \text{ and } \mathbf{b} = -\mathbf{i} + 3\mathbf{j} + \mathbf{k},$$

(a) show that $\mathbf{a} \times \mathbf{b} = c(2\mathbf{i} + \mathbf{j} - k\mathbf{k})$, and state the value of the constant c.

(2)

(2)

Solution

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 7 & 9 \\ -1 & 3 & 1 \end{vmatrix} = (7 - 27)\mathbf{i} - (1 + 9)\mathbf{j} + (3 + 7)\mathbf{k}$$
$$= -20\mathbf{i} - 10\mathbf{j} + 10\mathbf{k}$$
$$= -10(2\mathbf{i} + \mathbf{j} - \mathbf{k}),$$

and so $\underline{c = -10}$.

The plane Π_1 passes through the point (3, 1, 3) and the vector $\mathbf{a} \times \mathbf{b}$ is perpendicular to Π_1 .

(b) Find a cartesian equation for the plane Π_1 .

Solution

$$\mathbf{r}.(2\mathbf{i} + \mathbf{j} - \mathbf{k}) = (3\mathbf{i} + \mathbf{j} + 3\mathbf{k}).(2\mathbf{i} + \mathbf{j} - \mathbf{k})$$

$$\Rightarrow 2x + y - z = 6 + 1 - 3$$

$$\Rightarrow 2x + y - z = 4.$$

The line l_1 has equation $\mathbf{r} = \mathbf{i} - 2\mathbf{k} + \lambda \mathbf{a}$.

(c) Show that the line l_1 lies in the plane Π_1 .

Solution

The line l_1 passes through the point (1, 0, -2) and this lies in the plane. l_1 has direction **a** which is perpendicular to $\mathbf{a} \times \mathbf{b}$, so l_1 is parallel to the plane. Hence, $\underline{l_1}$ lies in the plane.

The line l_2 has equation $\mathbf{r} = \mathbf{i} + \mathbf{j} + \mathbf{k} + \mu \mathbf{b}$. The line l_2 lies in a plane Π_2 , which is parallel to the plane Π_1 .

(d) Find a cartesian equation of the plane Π_2 .

(2)

Solution

$$\mathbf{r}.(2\mathbf{i} + \mathbf{j} - \mathbf{k}) = (\mathbf{i} + \mathbf{j} + \mathbf{k}).(2\mathbf{i} + \mathbf{j} - \mathbf{k})$$

$$\Rightarrow 2x + y - z = 2 + 1 - 1$$

$$\Rightarrow \underline{2x + y - z = 2}.$$

(e) Find the distance between the planes Π_1 and Π_2 .

(3)

Solution

$$\sqrt{2^2 + 1^2 + 1^2} = \sqrt{6}$$

and

distance between the planes =
$$\frac{4-2}{\sqrt{6}} = \frac{\sqrt{3}}{\underline{6}}$$
.

11. The plane Π has vector equation

$$\mathbf{r} = 3\mathbf{i} + \mathbf{k} + \lambda(-4\mathbf{i} + \mathbf{j}) + \mu(6\mathbf{i} - 2\mathbf{j} + \mathbf{k}).$$

(a) Find an equation of Π in the form $\mathbf{r}.\mathbf{n}=p$, where \mathbf{n} is a vector perpendicular to Π and p is a constant. (5)

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -4 & 1 & 0 \\ 6 & -2 & 1 \end{vmatrix} = (1-0)\mathbf{i} - (-4-0)\mathbf{j} + (8-6)\mathbf{k}$$
$$= \mathbf{i} + 4\mathbf{j} + 2\mathbf{k},$$

and so

$$\mathbf{r}.(\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}) = (3\mathbf{i} + \mathbf{k}).(\mathbf{i} + 4\mathbf{j} + 2\mathbf{k})$$

$$\Rightarrow \mathbf{r}.(\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}) = 3 + 0 + 2$$

$$\Rightarrow \underline{\mathbf{r}.(\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}) = 5}.$$

The point P has coordinates (6, 13, 5). The line l passes through P and is perpendicular to Π . The line l intersects Π at the point N.

(b) Show that the coordinates of N are (3, 1, -1).

(4)

Solution

The line l is

$$\mathbf{r} = 6\mathbf{i} + 13\mathbf{j} + 5\mathbf{k} + t(\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}).$$

The intersection is

$$(6+t) + 4(13+4t) + 2(5+2t) = 5 \Rightarrow 6+t+52+16t+10+4t = 5$$

$$\Rightarrow 21t = -63$$

$$\Rightarrow t = -3$$

$$\Rightarrow N(3,1,-1).$$

The point R lies on Π and has coordinates (1,0,2).

(c) Find the perpendicular distance from N to the line PR. Give your answer to 3 significant figures. (5)

$$\overrightarrow{PR}.\overrightarrow{PN} = (-5\mathbf{i} - 13\mathbf{j} - 3\mathbf{k}).(-3\mathbf{i} - 12\mathbf{j} - 6\mathbf{k})$$

= 15 + 156 + 18
= 189.

Now,

$$\cos NPR = \frac{189}{\sqrt{5^2 + 13^2 + 3^3}\sqrt{3^2 + 12^2 + 6^3}}$$

$$\Rightarrow \cos NPR = \frac{189}{\sqrt{203} \times \sqrt{189}}$$

$$\Rightarrow \cos NPR = \frac{189}{\sqrt{203} \times \sqrt{189}}$$

$$\Rightarrow \cos NPR = \frac{3\sqrt{87}}{29},$$

and

distance =
$$NP \sin NPR$$

= 3.610 330 007 (FCD)
= 3.61 (3 sf).

12. The plane P has equation

$$\mathbf{r} = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}.$$

(a) Find a vector perpendicular to the plane P.

Solution

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 2 & -1 \\ 3 & 2 & 2 \end{vmatrix} = (4+2)\mathbf{i} - (0+3)\mathbf{j} + (0-6)\mathbf{k}$$
$$= 6\mathbf{i} - 3\mathbf{j} - 6\mathbf{k};$$

hence, $\underline{2\mathbf{i} - \mathbf{j} - 2\mathbf{k}}$ is a vector.

The line l passes through the point A(1,3,3) and meets P at (3,1,2). The acute angle between the plane P and the line l is α .

(b) Find α to the nearest degree.

(4)

(2)

Solution

The line l has direction $2\mathbf{i} - 2\mathbf{j} - \mathbf{k}$ and angle between line l and normal is given by

$$\sin \alpha = \frac{(2\mathbf{i} - \mathbf{j} - 2\mathbf{k}).(2\mathbf{i} - 2\mathbf{j} - \mathbf{k})}{\sqrt{2^2 + 1^2 + 2^2}\sqrt{2^2 + 2^2 + 1^2}}$$

$$\Rightarrow \sin \alpha = \frac{4 + 2 + 2}{3 \times 3}$$

$$\Rightarrow \sin \alpha = \frac{8}{9}$$

$$\Rightarrow \alpha = 62.73395555 \text{ (FCD)}$$

$$\Rightarrow \alpha = 63^{\circ} \text{ (nearest degree)}.$$

(c) Find the perpendicular distance from A to the plane P.

Solution

Now, the plane P has equation

$$\mathbf{r} \cdot (2\mathbf{i} - \mathbf{j} - 2\mathbf{k}) = 6 - 1 - 4 = 1$$

(4)

(5)

and

distance between the planes =
$$\frac{1 - (-7)}{3} = \frac{8}{3}$$
.

13. The straight line l_1 is mapped onto the straight line l_2 by the transformation represented

$$\left(\begin{array}{ccc} 2 & -1 & 1 \\ 1 & 0 & -1 \\ 3 & -2 & 1 \end{array}\right).$$

The equation of l_2 is $(\mathbf{r} - \mathbf{a}) \times \mathbf{b} = \mathbf{0}$, where $\mathbf{a} = 4\mathbf{i} + \mathbf{j} + 7\mathbf{k}$ and $\mathbf{b} = 4\mathbf{i} + \mathbf{j} + 3\mathbf{k}$.

Find a vector equation for the line l_1 .

Solution

Let (x, y, z) be on l_1 . Now, equation of l_2 can be written as

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} 4 \\ 1 \\ 7 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ 1 \\ 3 \end{pmatrix}.$$

We need the inverse of the matrix.

Determinant:

$$\det = 2(0-2) + (1+3) + (-2-0) = -2.$$

Matrix of minors:

$$\begin{pmatrix} -2 & 4 & -2 \\ 1 & -1 & -1 \\ 1 & -3 & 1 \end{pmatrix}$$

Matrix of cofactors:

$$\begin{pmatrix}
-2 & -4 & -2 \\
-1 & -1 & 1 \\
1 & 3 & 1
\end{pmatrix}$$

Transpose:

$$\begin{pmatrix} -2 & -1 & 1 \\ -4 & -1 & 3 \\ -2 & 1 & 1 \end{pmatrix}$$

Inverse:

$$-\frac{1}{2} \left(\begin{array}{ccc} -2 & -1 & 1 \\ -4 & -1 & 3 \\ -2 & 1 & 1 \end{array} \right).$$

Next,

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = -\frac{1}{2} \begin{pmatrix} -2 & -1 & 1 \\ -4 & -1 & 3 \\ -2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 4+4\lambda \\ 1+\lambda \\ 7+3\lambda \end{pmatrix}$$
$$= -\frac{1}{2} \begin{pmatrix} -2-6\lambda \\ 4-8\lambda \\ -4\lambda \end{pmatrix}$$
$$= \begin{pmatrix} 1+3\lambda \\ -2+4\lambda \\ 2\lambda \end{pmatrix}$$
$$= \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 4 \\ 2 \end{pmatrix},$$

and the vector equation is

$$[\mathbf{r} - (\mathbf{i} - 2\mathbf{j})] \times (3\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}) = \mathbf{0}.$$

- 14. The position vectors of the points A, B, and C relative to an origin O are $\mathbf{i} 2\mathbf{j} 2\mathbf{k}$, $7\mathbf{i} 3\mathbf{k}$, and $4\mathbf{i} + 4\mathbf{j}$. Find
 - (a) $\overrightarrow{AC} \times \overrightarrow{BC}$,

Solution

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & 6 & 2 \\ -3 & 4 & 3 \end{vmatrix} = (18 - 8)\mathbf{i} - (9 + 6)\mathbf{j} + (12 + 18)\mathbf{k}$$
$$= 10\mathbf{i} - 15\mathbf{j} + 30\mathbf{k}.$$

(2)

(2)

(b) the area of triangle ABC,

Solution

Area =
$$\frac{1}{2} \left| \overrightarrow{AC} \times \overrightarrow{BC} \right|$$

= $\frac{1}{2} \times \sqrt{10^2 + 15^2 + 30^2}$
= $\frac{1}{2} \times 35$
= 17.5 .

(c) an equation of the plane ABC in the form $\mathbf{r}.\mathbf{n} = p$.

Solution

$$\mathbf{r}.(10\mathbf{i} - 15\mathbf{j} + 30\mathbf{k}) = (\mathbf{i} - 2\mathbf{j} - 2\mathbf{k}).(10\mathbf{i} - 15\mathbf{j} + 30\mathbf{k})$$

 $\Rightarrow \mathbf{r}.(10\mathbf{i} - 15\mathbf{j} + 30\mathbf{k}) = 10 + 30 - 60$
 $\Rightarrow \underline{\mathbf{r}.(10\mathbf{i} - 15\mathbf{j} + 30\mathbf{k}) = -20}.$

15. The straight line l_1 is mapped onto the straight line l_2 by the transformation represented by the matrix \mathbf{M} , where

$$\mathbf{M} = \left(\begin{array}{rrr} 2 & 1 & 0 \\ 1 & 2 & 0 \\ -1 & 0 & 4 \end{array} \right).$$

The equation of l_1 is $(\mathbf{r} - \mathbf{a}) \times \mathbf{b} = \mathbf{0}$, where $\mathbf{a} = 3\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}$ and $\mathbf{b} = \mathbf{i} - \mathbf{j} + 2\mathbf{k}$.

Find a vector equation for the line l_2 .

Solution

$$\left(\begin{array}{ccc} 2 & 1 & 0 \\ 1 & 2 & 0 \\ -1 & 0 & 4 \end{array}\right) \left(\begin{array}{ccc} 3 & 1 \\ 2 & -1 \\ -2 & 2 \end{array}\right) = \left(\begin{array}{ccc} 8 & 1 \\ 7 & -1 \\ -11 & 7 \end{array}\right),$$

and the vector equation is

$$[\mathbf{r} - (8\mathbf{i} + 7\mathbf{j} - 11\mathbf{k})] \times (\mathbf{i} - \mathbf{j} + 7\mathbf{k}) = \mathbf{0}.$$

16. The plane Π_1 has vector equation

$$\mathbf{r}.(3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}) = 5.$$

(3)

(5)

(a) Find the perpendicular distance from the point (6, 2, 12) to the plane Π_1 .

Solution

The plane Π_2 has vector equation

$$\mathbf{r} = \lambda(2\mathbf{i} + \mathbf{j} + 5\mathbf{k}) + \mu(\mathbf{i} - \mathbf{j} - 2\mathbf{k}),$$

where λ and μ are scalar parameters.

(b) find the acute angle between Π_1 and Π_2 giving your answer to the nearest degree.

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & 5 \\ 1 & -1 & -2 \end{vmatrix} = (-2+5)\mathbf{i} - (-4-5)\mathbf{j} + (-2-1)\mathbf{k}$$
$$= 3\mathbf{i} + 9\mathbf{j} - 3\mathbf{k},$$

and

$$\cos \theta = \frac{(3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}).(3\mathbf{i} + 9\mathbf{j} - 3\mathbf{k})}{\sqrt{3^2 + 9^2 + 3^2}\sqrt{3^2 + 4^2 + 2^2}}$$

$$\Rightarrow \cos \theta = \frac{9 - 36 - 6}{\sqrt{99}\sqrt{29}}$$

$$\Rightarrow \cos \theta = \frac{-33}{\sqrt{99}\sqrt{29}}$$

$$\Rightarrow \theta = 128.0160187 \text{ (FCD)},$$

and the angle is

$$180 - 128.016... = 52^{\circ}$$
 (nearest degree).

(c) Find an equation of the line of intersection of the two planes in the form $\mathbf{r} \times \mathbf{a} = \mathbf{b}$, where \mathbf{a} and \mathbf{b} are constant vectors.

Solution

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & -4 & 2 \\ 1 & 3 & -1 \end{vmatrix} = (4-6)\mathbf{i} - (-3-5)\mathbf{j} + (9+4)\mathbf{k}$$
$$= -2\mathbf{i} + 8\mathbf{j} + 13\mathbf{k}.$$

Now, we have

$$3x - 4y + 2z = 5$$
 and $x + 3y - z = 0$

and we set x = 0:

$$3y - z = 0 \Rightarrow z = 3y$$

$$\Rightarrow -4y + 2(3y) = 5$$

$$\Rightarrow 2y = 5$$

$$\Rightarrow y = \frac{5}{2}$$

$$\Rightarrow z = \frac{15}{2},$$

and the equation of the line of intersection is

$$\mathbf{r} \times \left(\frac{5}{2}\mathbf{j} + \frac{15}{2}\mathbf{k}\right) = -2\mathbf{i} + 8\mathbf{j} + 13\mathbf{k}.$$

17. Two skew lines l_1 and l_2 have equations

$$l_1: \mathbf{r} = (\mathbf{i} - \mathbf{j} + \mathbf{k}) + \lambda(4\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}),$$

 $l_2: \mathbf{r} = (3\mathbf{i} + 7\mathbf{j} + 2\mathbf{k}) + \mu(-4\mathbf{i} + 6\mathbf{j} + \mathbf{k}),$

respectively, where λ and μ are real parameters.

(a) Find a vector in the direction of the common perpendicular to l_1 and l_2 .

(2)

(5)

(9)

Solution

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 4 & 3 & 2 \\ -4 & 6 & 1 \end{vmatrix} = (3 - 12)\mathbf{i} - (4 + 8)\mathbf{j} + (24 + 12)\mathbf{k}$$
$$= \underline{-9\mathbf{i} - 12\mathbf{j} + 36\mathbf{k}}.$$

(b) Find the shortest distance between these two lines.

Solution

$$(\mathbf{i} - \mathbf{j} + \mathbf{k}) - (3\mathbf{i} + 7\mathbf{j} + 2\mathbf{k}) = -2\mathbf{i} - 8\mathbf{j} - \mathbf{k}$$

and the

shortest distance =
$$\left| \frac{(-2\mathbf{i} - 8\mathbf{j} - \mathbf{k}) \cdot (-9\mathbf{i} - 12\mathbf{j} + 36\mathbf{k})}{\sqrt{9^2 + 12^2 + 36^2}} \right|$$

= $\left| \frac{18 + 96 - 36}{39} \right|$
= $\left| \frac{78}{39} \right|$
= $\underline{2}$.

18. The plane Π_1 has vector equation

$$\mathbf{r} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} + s \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix},$$

where s and t are real parameters. The plane Π_1 is transformed to the plane Π_2 by the transformation represented by the matrix \mathbf{T} , where

$$\mathbf{T} = \left(\begin{array}{ccc} 2 & 0 & 3 \\ 0 & 2 & -1 \\ 0 & 1 & 2 \end{array}\right).$$

Find an equation of the plane Π_2 in the form $\mathbf{r}.\mathbf{n} = p$.

Solution

$$\begin{pmatrix} 2 & 0 & 3 \\ 0 & 2 & -1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 2 \\ 2 & 0 & -2 \end{pmatrix} = \begin{pmatrix} 8 & 2 & -4 \\ -4 & 2 & 6 \\ 3 & 1 & -2 \end{pmatrix}$$

and

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 2 & 1 \\ -4 & 6 & -2 \end{vmatrix} = (-4 - 6)\mathbf{i} - (-4 + 4)\mathbf{j} + (12 + 8)\mathbf{k}$$
$$= -10\mathbf{i} + 20\mathbf{k}.$$

Finally,

$$\mathbf{r}.(\mathbf{i} - 2\mathbf{k}) = (8\mathbf{i} - 4\mathbf{j} + 3\mathbf{k}).(\mathbf{i} - 2\mathbf{k})$$
$$= 8 + 0 - 6$$
$$= \underline{2}.$$

19. The line l passes through the point P(2,1,3) and is perpendicular to the plane Π whose vector equation is

$$\mathbf{r}.(\mathbf{i} - 2\mathbf{j} - \mathbf{k}) = 3.$$

Find

(a) a vector equation of the line l,

Solution

$$\mathbf{r} = 2\mathbf{i} + \mathbf{j} + 3\mathbf{k} + t(\mathbf{i} - 2\mathbf{j} - \mathbf{k}).$$

(2)

(4)

(b) the position vector of the point where l meets Π .

$$\mathbf{r} = (2+t)\mathbf{i} + (1-2t)\mathbf{j} + (3-t)\mathbf{k}$$

and

$$[(2+t)\mathbf{i} + (1-2t)\mathbf{j} + (3-t)\mathbf{k}].(\mathbf{i} - 2\mathbf{j} - \mathbf{k}) = 3$$

$$\Rightarrow (2+t) - 2(1-2t) - (3-t) = 3$$

$$\Rightarrow 2+t-2+4t-3+t=3$$

$$\Rightarrow 6t = 6$$

$$\Rightarrow t = 1,$$

and the position vector is $3\mathbf{i} - \mathbf{j} + 2\mathbf{k}$.

(c) Hence find the perpendicular distance of P from Π .

Solution

Distance =
$$1 \times \sqrt{1^2 + 2^2 + 1^2} = \sqrt{6}$$
.

20. (4)

$$\mathbf{M} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 4 & 1 \\ 0 & 5 & 0 \end{pmatrix}.$$

(2)

The transformation $M: \mathbb{R}^3 \to \mathbb{R}^3$ is represented by the matrix \mathbf{M} . Find a cartesian equation of the image, under this transformation, of the line

$$x = \frac{y}{2} = \frac{z}{-1}.$$

Solution

We will rewrite the line as

$$\frac{x-0}{1} = \frac{y-0}{2} = \frac{z-0}{-1}$$

and

$$\begin{pmatrix} 1 & 0 & 2 \\ 0 & 4 & 1 \\ 0 & 5 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 2 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 0 & 7 \\ 0 & 10 \end{pmatrix}$$

giving us

$$\frac{x}{-1} = \frac{y}{7} = \frac{z}{10}.$$

21. The position vectors of the points A, B, and C from a fixed origin O are

$$\mathbf{a} = \mathbf{i} - \mathbf{j}$$
, $\mathbf{b} = \mathbf{i} + \mathbf{j} + \mathbf{k}$, and $\mathbf{c} = 2\mathbf{j} + \mathbf{k}$,

respectively.

(a) Using vector products, find the area of the triangle ABC.

(4)

Solution

$$\overrightarrow{AB} = 2\mathbf{j} + \mathbf{k} \text{ and } \overrightarrow{AC} = -\mathbf{i} + 3\mathbf{j} + \mathbf{k}.$$

Now,

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 2 & 1 \\ -1 & 3 & 1 \end{vmatrix} = (2-3)\mathbf{i} - (0+1)\mathbf{j} + (0+2)\mathbf{k}$$
$$= -\mathbf{i} - \mathbf{j} + 2\mathbf{k},$$

and

area of the triangle =
$$\frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}|$$

= $\frac{1}{2} |-\mathbf{i} - \mathbf{j} + 2\mathbf{k}|$
= $\frac{1}{2} \times \sqrt{1^2 + 1^2 + 2^2}$
= $\frac{\sqrt{6}}{2}$.

(b) Show that

$$\frac{1}{3}\mathbf{a}.(\mathbf{b}\times\mathbf{c}) = 0. \tag{3}$$

Solution

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 1 \\ 0 & 2 & 1 \end{vmatrix} = (1-2)\mathbf{i} - (1-0)\mathbf{j} + (2-0)\mathbf{k}$$
$$= -\mathbf{i} - \mathbf{j} + 2\mathbf{k}.$$

and

$$\frac{1}{6}\mathbf{a}.(\mathbf{b} \times \mathbf{c}) = \frac{1}{6}(\mathbf{i} - \mathbf{j}).(-\mathbf{i} - \mathbf{j} + 2\mathbf{k})$$

$$= \frac{1}{6}(-1 + 1 + 0)$$

$$= \underline{0},$$

as required.

(c) Hence or otherwise, state what can be deduced about the vectors **a**, **b**, and **c**. (1)

Solution

The position vectors **a**, **b**, and **c** <u>lie in the same plane</u>.

22. The plane Π_1 has vector equation

$$\mathbf{r}.(2\mathbf{i} + \mathbf{j} + 3\mathbf{k}) = 5.$$

The plane Π_2 has vector equation

$$\mathbf{r}.(-\mathbf{i} + 2\mathbf{j} + 4\mathbf{k}) = 7.$$

(a) Find a vector equation for the line of intersection of Π_1 and Π_2 , giving your answer in the form $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$ where \mathbf{a} and \mathbf{b} are constant vectors and λ is a scalar parameter.

(6)

Solution

The equations are

$$2x + y + 3z = 5$$
 and $-x + 2y + 4z = 7$.

Well, we want the first equation plus two times the second:

$$5y + 11z = 19 \Rightarrow 5y = -11z + 19$$
$$\Rightarrow y = \frac{-11z + 19}{5}$$
$$\Rightarrow y = \frac{z - \frac{19}{11}}{-\frac{5}{11}}.$$

Now,

$$\Rightarrow -x + 2y + \frac{4(5y - 19)}{-11} = 7$$

$$\Rightarrow x = 2y + \frac{4(5y - 19)}{-11} - 7$$

$$\Rightarrow x = \frac{-22y + (20y - 76) + 77}{-11}$$

$$\Rightarrow x = \frac{-2y + 1}{-11}$$

$$\Rightarrow y = \frac{-11x - 1}{-2}$$

$$\Rightarrow y = \frac{x - (-\frac{1}{11})}{\frac{2}{11}};$$

hence, the equation of the line is

$$\frac{x - \left(-\frac{1}{11}\right)}{\frac{2}{11}} = \frac{y - 0}{1} = \frac{z - \frac{19}{11}}{-\frac{5}{11}}$$

which gives

$$\mathbf{r} = -\frac{1}{11}\mathbf{i} + \frac{19}{11}\mathbf{k} + \lambda(\frac{2}{11}\mathbf{i} + \mathbf{j} - \frac{5}{11}\mathbf{k}).$$

The plane Π_3 has cartesian equation x - y + 2z = 31.

(b) Using your answer to part (a), or otherwise, find the coordinates of the point of intersection of the planes Π_1 , Π_2 , and Π_3 .

Solution

$$\begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} \begin{pmatrix} -\frac{1}{11} + \frac{2}{11}\lambda \\ \lambda \\ \frac{19}{11} - \frac{5}{11}\lambda \end{pmatrix} = 31$$

$$\Rightarrow (-\frac{1}{11} + \frac{2}{11}\lambda) - \lambda + 2(\frac{19}{11} - \frac{5}{11}\lambda) = 31$$

$$\Rightarrow -\frac{1}{11} + \frac{2}{11}\lambda - \lambda + \frac{38}{11} - \frac{10}{11}\lambda = 31$$

$$\Rightarrow -\frac{19}{11}\lambda = \frac{304}{11}$$

$$\Rightarrow \lambda = -16,$$

and hence the point is (-3, -16, 9).

23. The points A, B, and C have position vectors

$$\begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \text{ and } \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix},$$

respectively.

(a) Find a vector equation of the straight line AB.

(2)

Solution

e.g.,

$$\mathbf{r} = \begin{pmatrix} 1\\3\\2 \end{pmatrix} + t \begin{pmatrix} 2\\3\\1 \end{pmatrix}.$$

(b) Find a cartesian form of the equation of the straight line AB.

Solution

$$\frac{x-1}{2} = \frac{y-3}{3} = \frac{z-2}{1}.$$

(2)

(4)

(2)

The plane Π contains the points A, B, and C.

(c) Find a vector equation of Π in the form $\mathbf{r}.\mathbf{n} = p$.

Solution

$$\overrightarrow{AB} = -2\mathbf{i} - 3\mathbf{j} - \mathbf{k} \text{ and } \overrightarrow{AC} = \mathbf{i} - 2\mathbf{j} - 2\mathbf{k}.$$

Now,

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -2 & -3 & -1 \\ 1 & -2 & -2 \end{vmatrix} = (6-2)\mathbf{i} - (4+1)\mathbf{j} + (4+3)\mathbf{k}$$
$$= 4\mathbf{i} - 5\mathbf{j} + 7\mathbf{k}.$$

Finally,

$$\mathbf{r}.(4\mathbf{i} - 5\mathbf{j} + 7\mathbf{k}) = (\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}).(4\mathbf{i} - 5\mathbf{j} + 7\mathbf{k})$$

$$\Rightarrow \mathbf{r}.(4\mathbf{i} - 5\mathbf{j} + 7\mathbf{k}) = 4 - 15 + 14$$

$$\Rightarrow \underline{\mathbf{r}.(4\mathbf{i} - 5\mathbf{j} + 7\mathbf{k}) = 3}.$$

(d) Find the perpendicular distance from the origin to Π .

Solution

$$\sqrt{4^2 + 5^2 + 7^2} = 3\sqrt{10}$$

and

the perpendicular distance
$$=\frac{3}{3\sqrt{10}} = \frac{\sqrt{10}}{\underline{10}}$$
.

24. The plane Π_1 has equation

$$x - 5y - 2z = 3.$$

The plane Π_2 has equation

$$\mathbf{r} = \mathbf{i} + 2\mathbf{j} + \mathbf{k} + \lambda(\mathbf{i} + 4\mathbf{j} + 3\mathbf{k}) + \mu(2\mathbf{i} - \mathbf{j} + \mathbf{k}),$$

where λ and μ are scalar parameters.

(a) Show that Π_1 is perpendicular to Π_2 .

(4)

Solution

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 4 & 3 \\ 2 & -1 & 1 \end{vmatrix} = (4+3)\mathbf{i} - (1-6)\mathbf{j} + (-1-8)\mathbf{k}$$
$$= 7\mathbf{i} + 5\mathbf{j} - 9\mathbf{k}.$$

Now,

$$(\mathbf{i} - 5\mathbf{j} - 2\mathbf{k}) \cdot (7\mathbf{i} + 5\mathbf{j} - 9\mathbf{k}) = 7 - 25 + 18 = 0,$$

and Π_1 is <u>perpendicular</u> to Π_2 .

(b) Find a cartesian equation for Π_2 .

(2)

Solution

$$(x\mathbf{i} + y\mathbf{j} + z\mathbf{k}).(7\mathbf{i} + 5\mathbf{j} - 9\mathbf{k}) = (7\mathbf{i} + 5\mathbf{j} - 9\mathbf{k}).(\mathbf{i} + 2\mathbf{j} + \mathbf{k})$$

$$\Rightarrow 7x + 5y - 9z = 7 + 10 - 9$$

$$\Rightarrow \underline{7x + 5y - 9z = 8}.$$

(c) Find an equation for the line of intersection of Π_1 and Π_2 giving your answer in the form $(\mathbf{r} - \mathbf{a}) \times \mathbf{b} = \mathbf{0}$, where \mathbf{a} and \mathbf{b} are constant vectors to be found.

Solution

Add Π_1 plus Π_2 :

$$8x - 11z = 11 \Rightarrow x = \frac{11z + 11}{8}$$
$$\Rightarrow x = \frac{z + 1}{\frac{8}{11}}.$$

Now,

$$x - 5y - \frac{2(8x - 11)}{11} = 3 \Rightarrow \frac{11x - 2(8x - 11)}{11} = 5y + 3$$

$$\Rightarrow \frac{-5x + 22}{11} = 5y + 3$$

$$\Rightarrow -5x + 22 = 55y + 33$$

$$\Rightarrow -5x = 55y + 11$$

$$\Rightarrow x = \frac{55y + 11}{-5}$$

$$\Rightarrow x = \frac{y + \frac{1}{5}}{-\frac{1}{11}}.$$

Hence, the line in question is

$$\frac{x-0}{1} = \frac{y - \left(-\frac{1}{5}\right)}{-\frac{1}{11}} = \frac{z - \left(-1\right)}{\frac{8}{11}}$$

which gives

$$\left[\mathbf{r}-(-\tfrac{1}{5}\mathbf{j}-\mathbf{k})\right]\times(\mathbf{i}-\tfrac{1}{11}\mathbf{j}+\tfrac{8}{11}\mathbf{k})=\mathbf{0}.$$

25. The plane Π_1 has equation

$$x - 2y - 3z = 5$$

and the plane Π_2 has equation

$$6x + y - 4z = 7.$$

(3)

(a) Find, to the nearest degree, the acute angle between Π_1 and Π_2 .

$$\cos \theta = \left| \frac{(\mathbf{i} - 2\mathbf{j} - 3\mathbf{k}) \cdot (6\mathbf{i} + \mathbf{j} - 4\mathbf{k})}{\sqrt{1^2 + 2^2 + 3^2} \sqrt{6^2 + 1^2 + 4^2}} \right|$$

$$\Rightarrow \cos \theta = \left| \frac{6 - 2 + 12}{\sqrt{14} \sqrt{53}} \right|$$

$$\Rightarrow \cos \theta = \left| \frac{16}{\sqrt{14} \sqrt{53}} \right|$$

$$\Rightarrow \theta = 54.028\,803\,06 \text{ (FCD)}$$

$$\Rightarrow \theta = 54 \text{ (nearest degree)}.$$

The point P has coordinates (2,3,-1). The line l is perpendicular to Π_1 and passes through the point P. The line l intersects Π_2 at the point Q.

(b) Find the coordinates of Q.

(4)

Solution

$$\overrightarrow{PQ} = (2\mathbf{i} + 3\mathbf{j} - \mathbf{k}) + t(\mathbf{i} - 2\mathbf{j} - 3\mathbf{k})$$
$$= (2 + t)\mathbf{i} + (3 - 2t)\mathbf{j} + (-1 - 3t)\mathbf{k}.$$

Now,

$$6(2+t) + (3-2t) - 4(-1-3t) = 7 \Rightarrow 12 + 6t + 3 - 2t + 4 + 12t = 7$$
$$\Rightarrow 16t = 12$$
$$\Rightarrow t = -\frac{3}{4},$$

and

$$Q(1\frac{1}{4}, 4\frac{1}{2}, 1\frac{1}{4}).$$

The plane Π_3 passes through the point Q and is perpendicular to Π_1 and Π_2 .

(c) Find an equation of the plane Π_3 in the form $\mathbf{r}.\mathbf{n} = p$.

(4)

Solution

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -2 & -3 \\ 6 & 1 & -4 \end{vmatrix} = (8+3)\mathbf{i} - (-4+18)\mathbf{j} + (1+12)\mathbf{k}$$
$$= 11\mathbf{i} - 14\mathbf{j} + 13\mathbf{k}.$$

Finally,

$$\mathbf{r}.(11\mathbf{i} - 14\mathbf{j} + 13\mathbf{k}) = (11\mathbf{i} - 14\mathbf{j} + 13\mathbf{k}).(2\mathbf{i} + 3\mathbf{j} - \mathbf{k})$$

 $\Rightarrow \mathbf{r}.(11\mathbf{i} - 14\mathbf{j} + 13\mathbf{k}) = 22 - 42 - 13$
 $\Rightarrow \mathbf{r}.(11\mathbf{i} - 14\mathbf{j} + 13\mathbf{k}) = -33.$

26. The straight line l_2 is mapped onto the straight line l_1 by the transformation represented by the matrix (6)

$$\left(\begin{array}{rrr} 1 & 0 & 0 \\ -2 & -1 & -1 \\ -6 & -1 & -2 \end{array}\right).$$

Given that l_2 has cartesian equation

$$\frac{x-1}{5} = \frac{y+2}{2} = \frac{z-3}{1},$$

find a cartesian equation of the line l_1 .

Solution

$$\begin{pmatrix} 1 & 0 & 0 \\ -2 & -1 & -1 \\ -6 & -1 & -2 \end{pmatrix} \begin{pmatrix} 1 & 5 \\ -2 & 2 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 5 \\ -3 & -13 \\ -10 & -34 \end{pmatrix};$$

hence,

$$\frac{x-1}{5} = \frac{y+3}{-13} = \frac{z+10}{-34}.$$

Mathematics

Dr Oliver Mathematics

Dr Oliver Mathematics

Dr Oliver

Mathematics