Dr Oliver Mathematics Mathematics: Advanced Higher 2009 Paper 3 hours

The total number of marks available is 100 .
You must write down all the stages in your working.

1. (a) Given

$$
\begin{equation*}
\mathrm{f}(x)=(x+1)(x-2)^{3}, \tag{3}
\end{equation*}
$$

obtain the values of x for which $\mathrm{f}^{\prime}(x)=0$
(b) Calculate the gradient of the curve defined by

$$
\begin{equation*}
\frac{x^{2}}{y}+x=y-5 \tag{4}
\end{equation*}
$$

at the point $(3,-1)$.
2. Given the matrix

$$
\mathbf{A}=\left(\begin{array}{cc}
t+4 & 3 t \tag{3}\\
3 & 5
\end{array}\right)
$$

(a) find \mathbf{A}^{-1} in terms of t when \mathbf{A} is non-singular.
(b) Write down the value of t such that \mathbf{A} is singular.
(c) Given that the transpose of \mathbf{A} is

$$
\left(\begin{array}{ll}
6 & 3 \tag{1}\\
6 & 5
\end{array}\right),
$$

find t.
3. Given that

$$
\begin{equation*}
x^{2} \mathrm{e}^{y} \frac{\mathrm{~d} y}{\mathrm{~d} x}=1, \tag{4}
\end{equation*}
$$

and $y=0$ when $x=1$, find y in terms of x.
4. Prove by induction that, for all positive integers n,

$$
\begin{equation*}
\sum_{r=1}^{n} \frac{1}{r(r+1)}=1-\frac{1}{n+1} \tag{5}
\end{equation*}
$$

5. Show that

$$
\begin{equation*}
\int_{\ln \frac{3}{2}}^{\ln 2} \frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{\mathrm{e}^{x}-\mathrm{e}^{-x}} \mathrm{~d} x=\ln \left(\frac{9}{5}\right) . \tag{4}
\end{equation*}
$$

6. (a) Express

$$
z=\frac{(1+2 \mathrm{i})^{2}}{7-\mathrm{i}}
$$

in the form $a+\mathrm{i} b$ where a and b are real numbers.
(b) Show z on an Argand diagram and evaluate $|z|$ and $\arg (z)$.
7. Use the substitution $x=2 \sin \theta$ to obtain the exact value of

$$
\begin{equation*}
\int_{0}^{\sqrt{2}} \frac{x^{2}}{\sqrt{4-x^{2}}} \mathrm{~d} x \tag{6}
\end{equation*}
$$

8. (a) Write down the binomial expansion of $(1+x)^{5}$.
(b) Hence show that $(0.9)^{5}$ is 0.59049 .
9. Use integration by parts to obtain the exact value of

$$
\begin{equation*}
\int_{0}^{1} x \tan ^{-1} x^{2} \mathrm{~d} x \tag{5}
\end{equation*}
$$

10. Use the Euclidean algorithm to obtain the greatest common divisor of 1326 and 14654 , expressing it in the form

$$
\begin{equation*}
1326 a+14654 b \tag{4}
\end{equation*}
$$

where a and b are integers.
11. The curve

$$
\begin{equation*}
y=x^{2 x^{2}+1} \tag{5}
\end{equation*}
$$

is defined for $x>0$.
Obtain the values of y and $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at the point where $x=1$.
12. (a) The first two terms of a geometric sequence are $a_{1}=p$ and $a_{2}=p^{2}$. Obtain expressions for S_{n} and $S_{2 n}$ in terms of p, where

$$
S_{k}=\sum_{j=1}^{k} a_{j}
$$

(b) Given that
show that $p^{n}=64$.
(c) Given also that $a_{3}=2 p$ and that $p>0$, obtain the exact value of p and hence the value of n.
13. The function $\mathrm{f}(x)$ is defined by

$$
\begin{equation*}
\mathrm{f}(x)=\frac{x^{2}+2 x}{x^{2}-1}, x \neq \pm 1 \tag{3}
\end{equation*}
$$

(a) Obtain equations for the asymptotes of the graph of $\mathrm{f}(x)$.
(b) Show that $\mathrm{f}(x)$ is a strictly decreasing function.
(c) Find the coordinates of the points where the graph of $\mathrm{f}(x)$ crosses
(i) the x-axis, and
(ii) the horizontal asymptote.
(d) Sketch the graph of $\mathrm{f}(x)$, showing clearly all relevant features.
14. (a) Express

$$
\frac{x^{2}+6 x-4}{(x+2)^{2}(x-4)}
$$

in partial fractions.
(b) Hence, or otherwise, obtain the first three non-zero terms in the Maclaurin expansion of

$$
\frac{x^{2}+6 x-4}{(x+2)^{2}(x-4)} .
$$

15. (a) Solve the differential equation

$$
\begin{equation*}
(x+1) \frac{\mathrm{d} y}{\mathrm{~d} x}-3 y=(x+1)^{4} \tag{6}
\end{equation*}
$$

given that $y=16$ when $x=1$, expressing the answer in the form $y=\mathrm{f}(x)$.
(b) Hence, find the area enclosed by the graphs of $y=\mathrm{f}(x), y=(1-x)^{4}$, and the x-axis.
16. (a) Use Gaussian elimination to solve the following system of equations:

$$
\begin{array}{r}
x+y-z=6 \tag{5}\\
2 x-3 y+2 z=2 \\
-5 x+2 y-4 z=1 .
\end{array}
$$

(b) Show that the line of intersection, L, of the planes $x+y-z=6$ and $2 x-3 y+2 z=2$ has parametric equations

$$
\begin{aligned}
& x=\lambda \\
& y=4 \lambda-14 \\
& z=5 \lambda-20 .
\end{aligned}
$$

(c) Find the acute angle between line L and the plane $-5 x+2 y-4 z=1$.

