Dr Oliver Mathematics Method of Exhaustion

In this note, we will examine the method of exhaustion.

Example 1

Every cube number is either a multiple of 9 , or is 1 more or 1 less than a multiple of 9 .

Solution

We will take $3 n, 3 n+1$, and $3 n+2$ as our examples for a^{3}.

$$
(3 n)^{3}=27 n^{3}=3\left(9 n^{3}\right)
$$

which is a multiple of 9 ;

$$
\begin{aligned}
(3 n+1)^{3} & =27 n^{3}+27 n^{2}+9 n+1 \\
& =9\left(3 n^{3}+n^{2}+n\right)+1
\end{aligned}
$$

which is 1 more than a multiple of 9 ;

$$
\begin{aligned}
(3 n+2)^{3} & =27 n^{3}+54 n^{2}+36 n+8 \\
& =9\left(3 n^{3}+6 n^{2}+4 n\right)+8
\end{aligned}
$$

which is 1 less than a multiple of 9 .

Here are some examples for you to try.

1. Suppose a and b are even integers. Prove that the sum and difference of a and b are divisible by 2 .

Solution

Hence $a=2 m$ and $b=2 n$ for some constants m and n. Then

$$
\begin{aligned}
a+b & =2 m+2 n \\
& =2(m+n)
\end{aligned}
$$

and

$$
\begin{aligned}
a-b & =2 m-2 n \\
& =2(m-n)
\end{aligned}
$$

which are both even.
2. If n is a positive integer then $\left(n^{7}-n\right)$ is divisible by 7 .

Solution

$$
\begin{aligned}
n^{7}-n & =n\left(n^{6}-1\right) \\
& =n\left(n^{3}+1\right)\left(n^{3}-1\right) \\
& =n(n+1)\left(n^{2}-n+1\right)(n-1)\left(n^{2}+n+1\right) .
\end{aligned}
$$

There are seven cases to consider: $n=7 q+r$ where $q \in \mathbb{N}$ and $r=0,1,2,3,4,5$, and 6 .
Case 1: $n=7 q: n^{7}-n$ has factor n which is divisible by 7 .
Case 2: $n=7 q+1: n^{7}-n$ has factor $n-1=7 q$ which is divisible by 7 .
Case 31: $n=7 q+2: n^{7}-n$ has factor $n^{2}+n+1$ which is divisible by 7 :

$$
\begin{aligned}
(7 q+2)^{2}+(7 q+2)+1 & =\left(49 q^{2}+28 n+4\right)+(7 q+2)+1 \\
& =49 q^{2}+35 n+7 \\
& =7\left(7 q^{2}+5 n+1\right)
\end{aligned}
$$

Case 4: $n=7 q+3: n^{7}-n$ has factor $n^{2}-n+1$ which is divisible by 7 :

$$
\begin{aligned}
(7 q+3)^{2}-(7 q+3)+1 & =\left(49 q^{2}+42 n+9\right)-(7 q+3)+1 \\
& =49 q^{2}+35 n+7 \\
& =7\left(7 q^{2}+5 n+1\right)
\end{aligned}
$$

Case 5: $n=7 q+4: n^{7}-n$ has factor $n^{2}+n+1$ which is divisible by 7 :

$$
\begin{aligned}
(7 q+4)^{2}+(7 q+4)+1 & =\left(49 q^{2}+56 n+16\right)+(7 q+4)+1 \\
& =49 q^{2}+63 n+21 \\
& =7\left(7 q^{2}+9 n+3\right)
\end{aligned}
$$

Case 6: $n=7 q+5: n^{7}-n$ has factor $n^{2}-n+1$ which is divisible by 7 :

$$
\begin{aligned}
(7 q+5)^{2}-(7 q+5)+1 & =\left(49 q^{2}+70 n+25\right)-(7 q+5)+1 \\
& =49 q^{2}+63 n+21 \\
& =7\left(7 q^{2}+9 n+3\right)
\end{aligned}
$$

Case 7: $n=7 q+6: n^{7}-n$ has factor $n+1=7 q+7$ which is divisible by 7 .

