
Dr Oliver 
Mathematics 

 
Dr Oliver 

Mathematics 
 

Dr Oliver 
Mathematics 

 
Dr Oliver 

Mathematics 
 

Dr Oliver 
Mathematics 

 
Dr Oliver 

Mathematics 

Dr Oliver Mathematics

Advance Level Further Mathematics

Further Mathematics 1: Calculator

1 hour 30 minutes

The total number of marks available is 75.
You must write down all the stages in your working.

1.
fpzq ” 2z3 ´ 4z2 ` 15z ´ 13.

Given that
fpzq ” pz ´ 1qp2z2 ` az ` bq,

where aand b are real constants,

(a) (2)find the value of a and the value of b.

Solution

ˆ 2z2 `az `b

z 2z3 `az2 `bz
´1 ´2z2 ´az ´b

Now,
´4 “ a´ 2 ñ a “ ´2

and
b “ 13.

(b) (4)Hence use algebra to find the three roots of the equation fpzq “ 0.

Solution

a “ 2, b “ ´2, and c “ 13:

x “
´b˘

?
b2 ´ 4ac

2a

“
2˘

?
´100

4

“
1˘ 5i

2
.
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Hence, the three roots of the equation are

1,
1´ 5i

2
, and

1` 5i

2
.

2.

fpxq “ 3
2
x2 `

4

3x
` 2x´ 5, x ă 0.

The equation fpxq “ 0 has a single root α.

(a) (2)Show that α lies in the interval r´3,´2.5s.

Solution

fp´3q “ 2 1
18

fp´2.5q “ ´1 19
120

Now, fpxq is continuous (because the question says that x ă 0) and we change
in sign. Therefore, α lies in the interval r´3,´2.5s.

(b) (5)Taking ´3 as a first approximation to α, apply the Newton-Raphson procedure
once to fpxq to obtain a second approximation to α. Give your answer to 3 decimal
places.

Solution

fpxq “ 3
2
x2 `

4

3x
` 2x´ 5 ñ fpxq “ 3

2
x2 ` 4

3
x´1 ` 2x´ 5

ñ f 1pxq “ 3x´ 4
3
x´2 ` 2.

Now,

x1 “ ´3´
3
2
p´3q2 ` 4

3
p´3q´1 ` 2p´3q ´ 5

3p´3q ´ 4
3
p´3q´2 ` 2

“ ´2.712 435 233 (FCD)

“ ´2.712 (3 sf).

(c) (3)Use linear interpolation once on the interval r´3,´2.5s to find another approxima-
tion to α, giving your answer to 3 decimal places.
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Solution

x1 “
p´3q ˆ | ´ 1 19

120
| ` p´2.5q ˆ |2 1

18
|

|2 1
18
| ` | ´ 1 19

120
|

“ ´2.680 207 433 (FCD)

“ ´2.680 (3 sf).

3. (a) Given that

A “

ˆ

´2 3
1 1

˙

and AB “

ˆ

´1 5 12
3 ´5 ´1

˙

,

(i) (2)find A´1.

Solution
The determinant is

p´2q ˆ 1´ 3ˆ 1 “ ´5

and

A´1
“ 1

´5

ˆ

1 ´3
´1 ´2

˙

“ 1
5

ˆ

´1 3
1 2

˙

.

(ii) (3)Hence, or otherwise, find the matrix B, giving your answer in its simplest form.

Solution

B “ A´1AB

“ 1
5

ˆ

´1 3
1 2

˙ˆ

´1 5 12
3 ´5 ´1

˙

“ 1
5

ˆ

10 ´20 ´15
5 ´5 10

˙

“

ˆ

2 ´4 ´3
1 ´1 2

˙

.

(b) Given that

C “

ˆ

0 1
´1 0

˙

,

3
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(i) (2)describe fully the single geometrical transformation represented by the matrix
C.

Solution
It is a transformation, 90˝, clockwise, about the origin.

(ii) (2)Hence find the matrix C39.

Solution

C2
“

ˆ

0 1
´1 0

˙ˆ

0 1
´1 0

˙

“

ˆ

´1 0
0 ´1

˙

and

C4
“

ˆ

´1 0
0 ´1

˙ˆ

´1 0
0 ´1

˙

“

ˆ

1 0
0 1

˙

.

Finally,

C39
“ pC4

q
9
ˆCˆC2

“

ˆ

0 1
´1 0

˙ˆ

´1 0
0 ´1

˙

“

ˆ

0 ´1
1 0

˙

.

4. (a) (4)Use the standard results for
n
ÿ

r“1

r and
n
ÿ

r“1

r2 to show that, for all positive integers

n,
n
ÿ

r“1

pr2 ´ r ´ 8q “ 1
3
npn´ aqpn` aq,

where a is a positive integer to be determined.

Solution

4
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n
ÿ

r“1

pr2 ´ r ´ 8q “
n
ÿ

r“1

r2 ´
n
ÿ

r“1

r ´
n
ÿ

r“1

8

“ 1
6
npn` 1qp2n` 1q ´ 1

2
npn` 1q ´ 8n

“ 1
6
nrpn` 1qp2n` 1q ´ 3pn` 1q ´ 48s

“ 1
6
np2n2

` 3n` 1´ 3n´ 3´ 48q

“ 1
6
np2n2

´ 50q

“ 1
3
npn2

´ 25q

“ 1
3
npn´ 5qpn` 5q;

hence, a “ 7.

(b) (1)Hence, or otherwise, state the positive value of n that satisfies

n
ÿ

r“1

pr2 ´ r ´ 8q “ 0.

Solution

n “ 5.

Given that
17
ÿ

r“3

pkr3 ` r2 ´ r ´ 8q “ 6 710,

where k is a constant,

(c) (4)find the exact value of k.

Solution

17
ÿ

r“3

pkr3 ` r2 ´ r ´ 8q “
17
ÿ

r“1

pkr3 ` r2 ´ r ´ 8q ´
2
ÿ

r“1

pkr3 ` r2 ´ r ´ 8q

“ k
17
ÿ

r“1

r3 `
17
ÿ

r“1

pr2 ´ r ´ 8q ´
2
ÿ

r“1

pkr3 ` r2 ´ r ´ 8q

“ 1
4
p17q2p17` 1q2k ` 1

3
p17qp12qp22q ´ pk ´ 8` 8k ´ 6q

“ 23 409k ` 1 496´ 9k ` 14

“ 23 400k ` 1 510.
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Now,

17
ÿ

r“3

pkr3 ` r2 ´ r ´ 8q “ 6 710

ñ 23 400k ` 1 510 “ 6 710

ñ 23 400k “ 5 200

ñ k “ 2
9
.

5. The rectangular hyperbola H has equation xy “ c2, where c is a positive constant.

Given that P
´

ct,
c

t

¯

, t ‰ 0, is a general point on H,

(a) (4)use calculus to show that the equation of the tangent to H at P can be written as

t2y ` x “ 2ct.

Solution

xy “ c2 ñ y “
c2

x

ñ
dy

dx
“ ´

c2

x2
,

and, at the P
´

ct,
c

t

¯

,

dy

dx
“ ´

c2

c2t2
“ ´

1

t2
.

Now,

y ´
c

t
“ ´

1

t2
px´ ctq ñ t2y ´ ct “ ´x` ct

ñ t2y ` x “ 2ct.

The points A and B lie on H.

The tangent to H at A and the tangent to H at B meet at the point

ˆ

´
8c

5
,
3c

5

˙

.

Given that the x-coordinate of A is positive,

(b) (5)find, in terms of c, the coordinates of A and the coordinates of B.

6
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Solution

Substitute
`

´8c
5
, 3c

5

˘

into the equation t2y ` x “ 2ct:

t2p3c
5
q ` p´8c

5
q “ 2ctñ 3t2 ´ 8 “ 10t

ñ 3t2 ´ 10t´ 8 “ 0

add to: ´10
multiply to: p`3q ˆ p´8q “ ´24

*

´ 12, `2

ñ 3t2 ´ 12t` 4t´ 8 “ 0

ñ 3tpt´ 4q ` 4pt´ 4q “ 0

ñ p3t` 2qpt´ 4q “ 0

ñ t “ ´2
3

or t “ 4.

Finally,

t “ ´2
3
ñ B

ˆ

´
2c

3
,´

3c

2

˙

and
t “ 4 ñ A

´

4c,
c

4

¯

.

6.

M “

ˆ

8 ´1
´4 2

˙

.

(a) (1)Find the value of detM.

Solution

detM “ p8ˆ 2q ´ rp´1q ˆ p´4qs “ 12.

The triangle T has vertices at the points p4, 1q, p6, kq, and p12, 1q, where k is a constant.
The triangle T is transformed onto the triangle T 1 by the transformation represented by
the matrix M.
Given that the area of triangle T 1 is 216 square units,

(b) (5)find the possible values of k.

7
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Solution

216 “ 12ˆ 1
2
ˆ |k ´ 1| ˆ 8

ñ |k ´ 1| “ 4.5

ñ k ´ 1 “ ´4.5 or k ´ 1 “ 4.5

ñ k “ ´3.5 or k “ 5.5.

7. The parabola C has equation y2 “ 4ax, where a is a positive constant.
The point S is the focus of C.
The straight line l passes through the point S and meets the directrix of C at the point
D.

Given that the y-coordinate of D is
24a

5
,

(a) (2)show that an equation of the line l is

12x` 5y “ 12a.

Solution

Now, Spa, 0q and Dp´a, 24a
5
q. The gradient of l is

24a
5
´ 0

´a´ a
“ ´12

5

and an equation of the line l is

y ´ 0 “ ´12
5
px´ aq ñ 5y “ ´12px´ aq

ñ 5y “ ´12x` 12a

ñ 12x` 5y “ 12a,

as required.

The point P pak2, 2akq, where k is a positive constant, lies on the parabola C.
Given that the line segment SP is perpendicular to l,

(b) (6)find, in terms of a, the coordinates of the point P .

Solution

8
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The gradient of PS is
2ak ´ 0

ak2 ´ a
“

2k

k2 ´ 1

and the equation of the line perpendicular to l is 5
12

. Now, the two expressions
are equal:

2k

k2 ´ 1
“

5

12
ñ 24k “ 5pk2 ´ 1q

ñ 24k “ 5k2 ´ 5

ñ 5k2 ´ 24k ´ 5 “ 0

add to: ´24
multiply to: p`5q ˆ p´5q “ ´25

*

´ 25, `1

ñ 5k2 ´ 25k ` k ´ 5 “ 0

ñ 5kpk ´ 5q ` 1pk ´ 5q “ 0

ñ p5k ` 1qpk ´ 5q “ 0

ñ k “ ´1
5

or k “ 5.

Finally, k ą 0 and P p25a, 10aq.

8. (6)Prove by induction that
fpnq “ 2n`2 ` 32n`1

is divisible by 7 for all positive integers n.

Solution

n “ 1:
fp1q “ 23

` 33
“ 8` 27 “ 35 “ 7ˆ 5

and so the solution is true for n “ 1.

Suppose the solution is true for n “ k, i.e.,

fpkq “ 2k`2 ` 32k`1

9
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is divisible by 7.

fpk ` 1q ´ fpkq “ r2pk`1q`2 ` 32pk`1q`1
s ´ r2k`2 ` 32k`1

s

“ r2k`3 ` 32k`3
s ´ r2k`2 ` 32k`1

s

“ p2k`3 ´ 2k`2q ` p32k`3
´ 32k`1

q

“ 2k`2p2´ 1q ` 32k`1
p32
´ 1q

“ 2k`2 ` 8ˆ 32k`1

“ p2k`2 ` 32k`1
q ` 7ˆ 32k`1,

and so
fpk ` 1q “ 2 fpkq ` 7ˆ 32k`1,

which is divisible by 7.

Hence, by mathematical induction, the expression is true for all positive integers n,
as required.

9. (a) Given that
3w ` 7

5
“
p´ 4i

3´ i
,

where p is a real constant

(i) (5)express w in the form a` bi, where a and b are real constants.
Give your answer in its simplest form in terms of p.

Solution

3w ` 7

5
“
p´ 4i

3´ i
ñ

3w ` 7

5
“
p´ 4i

3´ i
ˆ

3` i

3` i

ñ
2p3w ` 7q

10
“
pp` 4q ` p3p´ 12qi

10
ñ 2p3w ` 7q “ p3p` 4q ` pp´ 12qi

ñ 6w ` 14 “ p3p` 4q ` pp´ 12qi

ñ 6w “ p3p´ 10q ` pp´ 12qi

ñ w “
3p´ 10

6
`

ˆ

p´ 12

6

˙

i.

Given that argw “ ´π
2
,

(ii) (1)find the value of p.

10
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Solution
3p´ 10

6
“ 0 ñ p “ 10

3
.

(b) (6)Given that
pz ` 1´ 2iq˚ “ 4iz,

find z, giving your answer in the form z “ x` iy, where x and y are real constants.

Solution

pz ` 1´ 2iq˚ “ 4iz ñ px` iy ` 1´ 2iq˚ “ 4ipx` iyq

ñ rpx` 1q ` py ´ 2qis˚ “ ´4y ` 4xi

ñ x` 1´ py ´ 2qi “ ´4y ` 4xi;

so,

x` 1 “ ´4y ñ x` 4y “ ´1 p1q

´y ` 2 “ 4xñ 4x` y “ 2. p2q

p2q ´ 4ˆ p1q:

´15y “ 6 ñ y “ ´2
5

ñ x` 1 “ 8
5

ñ x “ 3
5
;

hence,
z “ 3

5
´ 2

5
i.
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