# Dr Oliver Mathematics <br> Advance Level Further Mathematics Further Mathematics 1: Calculator 1 hour 30 minutes 

The total number of marks available is 75 .
You must write down all the stages in your working.
1.

$$
\mathrm{f}(z) \equiv 2 z^{3}-4 z^{2}+15 z-13
$$

Given that

$$
\mathrm{f}(z) \equiv(z-1)\left(2 z^{2}+a z+b\right),
$$

where $a$ and $b$ are real constants,
(a) find the value of $a$ and the value of $b$.

## Solution

| $\times$ | $2 z^{2}$ | $+a z$ | $+b$ |
| :---: | :---: | :---: | :---: |
| $z$ | $2 z^{3}$ | $+a z^{2}$ | $+b z$ |
| -1 | $-2 z^{2}$ | $-a z$ | $-b$ |

Now,

$$
-4=a-2 \Rightarrow \underline{\underline{a=-2}}
$$

and

$$
\underline{b=13} .
$$

(b) Hence use algebra to find the three roots of the equation $\mathrm{f}(z)=0$.

## Solution

$a=2, b=-2$, and $c=13$ :

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{2 \pm \sqrt{-100}}{4} \\
& =\frac{1 \pm 5 \mathrm{i}}{2} .
\end{aligned}
$$

Hence, the three roots of the equation are

$$
1, \frac{1-5 \mathrm{i}}{2} \text {, and } \frac{1+5 \mathrm{i}}{2} .
$$

2. 

$$
f(x)=\frac{3}{2} x^{2}+\frac{4}{3 x}+2 x-5, x<0
$$

The equation $\mathrm{f}(x)=0$ has a single root $\alpha$.
(a) Show that $\alpha$ lies in the interval $[-3,-2.5]$.

## Solution

$\mathrm{f}(-3)=2 \frac{1}{18}$
$\mathrm{f}(-2.5)=-1 \frac{19}{120}$
Now, $\mathrm{f}(x)$ is continuous (because the question says that $x<0$ ) and we change in sign. Therefore, $\alpha$ lies in the interval $[-3,-2.5]$.
(b) Taking -3 as a first approximation to $\alpha$, apply the Newton-Raphson procedure once to $\mathrm{f}(x)$ to obtain a second approximation to $\alpha$. Give your answer to 3 decimal places.

## Solution

$$
\begin{aligned}
\mathrm{f}(x)=\frac{3}{2} x^{2}+\frac{4}{3 x}+2 x-5 & \Rightarrow \mathrm{f}(x)=\frac{3}{2} x^{2}+\frac{4}{3} x^{-1}+2 x-5 \\
& \Rightarrow \mathrm{f}^{\prime}(x)=3 x-\frac{4}{3} x^{-2}+2 .
\end{aligned}
$$

Now,

$$
\begin{aligned}
x_{1} & =-3-\frac{\frac{3}{2}(-3)^{2}+\frac{4}{3}(-3)^{-1}+2(-3)-5}{3(-3)-\frac{4}{3}(-3)^{-2}+2} \\
& =-2.712435233(\mathrm{FCD}) \\
& =-2.712(3 \mathrm{sf}) .
\end{aligned}
$$

(c) Use linear interpolation once on the interval $[-3,-2.5]$ to find another approximation to $\alpha$, giving your answer to 3 decimal places.

## Solution

$$
\begin{aligned}
x_{1} & =\frac{(-3) \times\left|-1 \frac{19}{120}\right|+(-2.5) \times\left|2 \frac{1}{18}\right|}{\left|2 \frac{1}{18}\right|+\left|-1 \frac{19}{120}\right|} \\
& =-2.680207433(\mathrm{FCD}) \\
& =\underline{\underline{-2.680(3 \mathrm{sf}) .}} .
\end{aligned}
$$

3. (a) Given that

$$
\mathbf{A}=\left(\begin{array}{cc}
-2 & 3 \\
1 & 1
\end{array}\right) \text { and } \mathbf{A B}=\left(\begin{array}{ccc}
-1 & 5 & 12 \\
3 & -5 & -1
\end{array}\right)
$$

(i) find $\mathbf{A}^{-1}$.

## Solution

The determinant is

$$
(-2) \times 1-3 \times 1=-5
$$

and

$$
\mathbf{A}^{-1}=\frac{1}{-5}\left(\begin{array}{cc}
1 & -3 \\
-1 & -2
\end{array}\right)=\underline{\underline{\frac{1}{5}\left(\begin{array}{cc}
-1 & 3 \\
1 & 2
\end{array}\right)} .}
$$

(ii) Hence, or otherwise, find the matrix $\mathbf{B}$, giving your answer in its simplest form.

## Solution

$$
\begin{aligned}
\mathbf{B} & =\mathbf{A}^{-1} \mathbf{A} \mathbf{B} \\
& =\frac{1}{5}\left(\begin{array}{cc}
-1 & 3 \\
1 & 2
\end{array}\right)\left(\begin{array}{ccc}
-1 & 5 & 12 \\
3 & -5 & -1
\end{array}\right) \\
& =\frac{1}{5}\left(\begin{array}{ccc}
10 & -20 & -15 \\
5 & -5 & 10
\end{array}\right) \\
& =\underline{\left(\begin{array}{ccc}
2 & -4 & -3 \\
1 & -1 & 2
\end{array}\right)} .
\end{aligned}
$$

(b) Given that

$$
\mathbf{C}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

(i) describe fully the single geometrical transformation represented by the matrix C.

## Solution

It is a transformation, $90^{\circ}$, clockwise, about the origin.
(ii) Hence find the matrix $\mathbf{C}^{39}$.

## Solution

$$
\mathbf{C}^{2}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)
$$

and

$$
\mathbf{C}^{4}=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

Finally,

$$
\begin{aligned}
\mathbf{C}^{39} & =\left(\mathbf{C}^{4}\right)^{9} \times \mathbf{C} \times \mathbf{C}^{2} \\
& =\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) \\
& =\underline{\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)} .
\end{aligned}
$$

4. (a) Use the standard results for $\sum_{r=1}^{n} r$ and $\sum_{r=1}^{n} r^{2}$ to show that, for all positive integers $n$,

$$
\sum_{r=1}^{n}\left(r^{2}-r-8\right)=\frac{1}{3} n(n-a)(n+a)
$$

where $a$ is a positive integer to be determined.

## Solution

$$
\begin{aligned}
\sum_{r=1}^{n}\left(r^{2}-r-8\right) & =\sum_{r=1}^{n} r^{2}-\sum_{r=1}^{n} r-\sum_{r=1}^{n} 8 \\
& =\frac{1}{6} n(n+1)(2 n+1)-\frac{1}{2} n(n+1)-8 n \\
& =\frac{1}{6} n[(n+1)(2 n+1)-3(n+1)-48] \\
& =\frac{1}{6} n\left(2 n^{2}+3 n+1-3 n-3-48\right) \\
& =\frac{1}{6} n\left(2 n^{2}-50\right) \\
& =\frac{1}{3} n\left(n^{2}-25\right) \\
& =\frac{1}{3} n(n-5)(n+5) ;
\end{aligned}
$$

hence, $\underline{\underline{a=7}}$.
(b) Hence, or otherwise, state the positive value of $n$ that satisfies

$$
\begin{equation*}
\sum_{r=1}^{n}\left(r^{2}-r-8\right)=0 \tag{1}
\end{equation*}
$$

## Solution

$\underline{\underline{n=5}}$.

Given that

$$
\sum_{r=3}^{17}\left(k r^{3}+r^{2}-r-8\right)=6710
$$

where $k$ is a constant,
(c) find the exact value of $k$.

## Solution

$$
\begin{aligned}
\sum_{r=3}^{17}\left(k r^{3}+r^{2}-r-8\right) & =\sum_{r=1}^{17}\left(k r^{3}+r^{2}-r-8\right)-\sum_{r=1}^{2}\left(k r^{3}+r^{2}-r-8\right) \\
& =k \sum_{r=1}^{17} r^{3}+\sum_{r=1}^{17}\left(r^{2}-r-8\right)-\sum_{r=1}^{2}\left(k r^{3}+r^{2}-r-8\right) \\
& =\frac{1}{4}(17)^{2}(17+1)^{2} k+\frac{1}{3}(17)(12)(22)-(k-8+8 k-6) \\
& =23409 k+1496-9 k+14 \\
& =23400 k+1510
\end{aligned}
$$

Now,

$$
\begin{aligned}
& \sum_{r=3}^{17}\left(k r^{3}+r^{2}-r-8\right)=6710 \\
\Rightarrow & 23400 k+1510=6710 \\
\Rightarrow & 23400 k=5200 \\
\Rightarrow & k=\frac{2}{9} .
\end{aligned}
$$

5. The rectangular hyperbola $H$ has equation $x y=c^{2}$, where $c$ is a positive constant.

Given that $P\left(c t, \frac{c}{t}\right), t \neq 0$, is a general point on $H$,
(a) use calculus to show that the equation of the tangent to $H$ at $P$ can be written as

$$
\begin{equation*}
t^{2} y+x=2 c t \tag{4}
\end{equation*}
$$

## Solution

$$
\begin{aligned}
x y=c^{2} & \Rightarrow y=\frac{c^{2}}{x} \\
& \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{c^{2}}{x^{2}},
\end{aligned}
$$

and, at the $P\left(c t, \frac{c}{t}\right)$,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{c^{2}}{c^{2} t^{2}}=-\frac{1}{t^{2}} .
$$

Now,

$$
\begin{aligned}
y-\frac{c}{t}=-\frac{1}{t^{2}}(x-c t) & \Rightarrow t^{2} y-c t=-x+c t \\
& \Rightarrow \underline{\underline{t^{2} y+x=2 c t}} .
\end{aligned}
$$

The points $A$ and $B$ lie on $H$.
The tangent to $H$ at $A$ and the tangent to $H$ at $B$ meet at the point $\left(-\frac{8 c}{5}, \frac{3 c}{5}\right)$.
Given that the $x$-coordinate of $A$ is positive,
(b) find, in terms of $c$, the coordinates of $A$ and the coordinates of $B$.

## Solution

Substitute $\left(-\frac{8 c}{5}, \frac{3 c}{5}\right)$ into the equation $t^{2} y+x=2 c t$ :

$$
\begin{aligned}
t^{2}\left(\frac{3 c}{5}\right)+\left(-\frac{8 c}{5}\right)=2 c t & \Rightarrow 3 t^{2}-8=10 t \\
& \Rightarrow 3 t^{2}-10 t-8=0
\end{aligned}
$$

$\left.\begin{array}{lc}\text { add to: } & -10 \\ \text { multiply to: } & (+3) \times(-8)=-24\end{array}\right\}-12,+2$

$$
\begin{aligned}
& \Rightarrow 3 t^{2}-12 t+4 t-8=0 \\
& \Rightarrow 3 t(t-4)+4(t-4)=0 \\
& \Rightarrow(3 t+2)(t-4)=0 \\
& \Rightarrow t=-\frac{2}{3} \text { or } t=4
\end{aligned}
$$

Finally,

$$
t=-\frac{2}{3} \Rightarrow \underline{\underline{B\left(-\frac{2 c}{3},-\frac{3 c}{2}\right)}}
$$

and

$$
t=4 \Rightarrow \underline{\underline{A\left(4 c, \frac{c}{4}\right)}} .
$$

6. 

$$
\mathbf{M}=\left(\begin{array}{cc}
8 & -1  \tag{1}\\
-4 & 2
\end{array}\right)
$$

(a) Find the value of $\operatorname{det} \mathbf{M}$.

Solution

$$
\operatorname{det} \mathbf{M}=(8 \times 2)-[(-1) \times(-4)]=\underline{\underline{12}} .
$$

The triangle $T$ has vertices at the points $(4,1),(6, k)$, and $(12,1)$, where $k$ is a constant. The triangle $T$ is transformed onto the triangle $T^{\prime}$ by the transformation represented by the matrix M .
Given that the area of triangle $T^{\prime}$ is 216 square units,
(b) find the possible values of $k$.

## Solution

$$
\begin{aligned}
216 & =12 \times \frac{1}{2} \times|k-1| \times 8 \\
& \Rightarrow|k-1|=4.5 \\
& \Rightarrow k-1=-4.5 \text { or } k-1=4.5 \\
& \Rightarrow k=-3.5 \text { or } k=5.5 .
\end{aligned}
$$

7. The parabola $C$ has equation $y^{2}=4 a x$, where $a$ is a positive constant.

The point $S$ is the focus of $C$.
The straight line $l$ passes through the point $S$ and meets the directrix of $C$ at the point D.

Given that the $y$-coordinate of $D$ is $\frac{24 a}{5}$,
(a) show that an equation of the line $l$ is

$$
\begin{equation*}
12 x+5 y=12 a . \tag{2}
\end{equation*}
$$

## Solution

Now, $S(a, 0)$ and $D\left(-a, \frac{24 a}{5}\right)$. The gradient of $l$ is

$$
\frac{\frac{24 a}{5}-0}{-a-a}=-\frac{12}{5}
$$

and an equation of the line $l$ is

$$
\begin{aligned}
y-0=-\frac{12}{5}(x-a) & \Rightarrow 5 y=-12(x-a) \\
& \Rightarrow 5 y=-12 x+12 a \\
& \Rightarrow \underline{\underline{12 x+5 y=12 a},}
\end{aligned}
$$

as required.

The point $P\left(a k^{2}, 2 a k\right)$, where $k$ is a positive constant, lies on the parabola $C$.
Given that the line segment $S P$ is perpendicular to $l$,
(b) find, in terms of $a$, the coordinates of the point $P$.

## Solution

The gradient of $P S$ is

$$
\frac{2 a k-0}{a k^{2}-a}=\frac{2 k}{k^{2}-1}
$$

and the equation of the line perpendicular to $l$ is $\frac{5}{12}$. Now, the two expressions are equal:

$$
\begin{aligned}
& \frac{2 k}{k^{2}-1}=\frac{5}{12} \Rightarrow 24 k=5\left(k^{2}-1\right) \\
& \\
& \\
& \Rightarrow 24 k=5 k^{2}-5 \\
& \\
& \text { add to: } \\
& \left.\begin{array}{rl}
\text { multiply to: } \quad & (+5) \times(-5)=-24 k-5=0
\end{array}\right\}-25,+1 \\
& \\
&
\end{aligned} \quad \Rightarrow 5 k^{2}-25 k+k-5=0 .
$$

Finally, $k>0$ and $\underline{\underline{P(25 a, 10 a)}}$.
8. Prove by induction that

$$
\begin{equation*}
\mathrm{f}(n)=2^{n+2}+3^{2 n+1} \tag{6}
\end{equation*}
$$

is divisible by 7 for all positive integers $n$.

## Solution

$\underline{n=1}$ :

$$
f(1)=2^{3}+3^{3}=8+27=35=7 \times 5
$$

and so the solution is true for $n=1$.
Suppose the solution is true for $n=k$, i.e.,

$$
\mathrm{f}(k)=2^{k+2}+3^{2 k+1}
$$

is divisible by 7 .

$$
\begin{aligned}
\mathrm{f}(k+1)-\mathrm{f}(k) & =\left[2^{(k+1)+2}+3^{2(k+1)+1}\right]-\left[2^{k+2}+3^{2 k+1}\right] \\
& =\left[2^{k+3}+3^{2 k+3}\right]-\left[2^{k+2}+3^{2 k+1}\right] \\
& =\left(2^{k+3}-2^{k+2}\right)+\left(3^{2 k+3}-3^{2 k+1}\right) \\
& =2^{k+2}(2-1)+3^{2 k+1}\left(3^{2}-1\right) \\
& =2^{k+2}+8 \times 3^{2 k+1} \\
& =\left(2^{k+2}+3^{2 k+1}\right)+7 \times 3^{2 k+1}
\end{aligned}
$$

and so

$$
\mathrm{f}(k+1)=2 \mathrm{f}(k)+7 \times 3^{2 k+1}
$$

which is divisible by 7 .

Hence, by mathematical induction, the expression is true for all positive integers $n$, as required.
9. (a) Given that

$$
\frac{3 w+7}{5}=\frac{p-4 \mathrm{i}}{3-\mathrm{i}}
$$

where $p$ is a real constant
(i) express $w$ in the form $a+b \mathrm{i}$, where $a$ and $b$ are real constants.

Give your answer in its simplest form in terms of $p$.

## Solution

$$
\begin{aligned}
\frac{3 w+7}{5}=\frac{p-4 \mathrm{i}}{3-\mathrm{i}} & \Rightarrow \frac{3 w+7}{5}=\frac{p-4 \mathrm{i}}{3-\mathrm{i}} \times \frac{3+\mathrm{i}}{3+\mathrm{i}} \\
& \Rightarrow \frac{2(3 w+7)}{10}=\frac{(p+4)+(3 p-12) \mathrm{i}}{10} \\
& \Rightarrow 2(3 w+7)=(3 p+4)+(p-12) \mathrm{i} \\
& \Rightarrow 6 w+14=(3 p+4)+(p-12) \mathrm{i} \\
& \Rightarrow 6 w=(3 p-10)+(p-12) \mathrm{i} \\
& \Rightarrow w=\frac{3 p-10}{6}+\left(\frac{p-12}{6}\right) \mathrm{i} .
\end{aligned}
$$

Given that $\arg w=-\frac{\pi}{2}$,
(ii) find the value of $p$.

## Solution

$$
\frac{3 p-10}{6}=0 \Rightarrow \underline{\underline{p=\frac{10}{3}}} .
$$

(b) Given that

$$
\begin{equation*}
(z+1-2 \mathrm{i})^{*}=4 \mathrm{i} z \tag{6}
\end{equation*}
$$

find $z$, giving your answer in the form $z=x+\mathrm{i} y$, where $x$ and $y$ are real constants.

## Solution

$$
\begin{aligned}
(z+1-2 \mathrm{i})^{*}=4 \mathrm{i} z & \Rightarrow(x+\mathrm{i} y+1-2 \mathrm{i})^{*}=4 \mathrm{i}(x+\mathrm{i} y) \\
& \Rightarrow[(x+1)+(y-2) \mathrm{i}]^{*}=-4 y+4 x \mathrm{i} \\
& \Rightarrow x+1-(y-2) \mathrm{i}=-4 y+4 x \mathrm{i}
\end{aligned}
$$

so,

$$
\begin{align*}
& x+1=-4 y \Rightarrow x+4 y=-1  \tag{1}\\
& -y+2=4 x \Rightarrow 4 x+y=2 . \tag{2}
\end{align*}
$$

(2) $-4 \times(1)$ :

$$
\begin{aligned}
-15 y=6 & \Rightarrow y=-\frac{2}{5} \\
& \Rightarrow x+1=\frac{8}{5} \\
& \Rightarrow x=\frac{3}{5} ;
\end{aligned}
$$

hence,

$$
\underline{\underline{z=\frac{3}{5}}-\frac{2}{5}} \mathrm{i} .
$$

