Circles

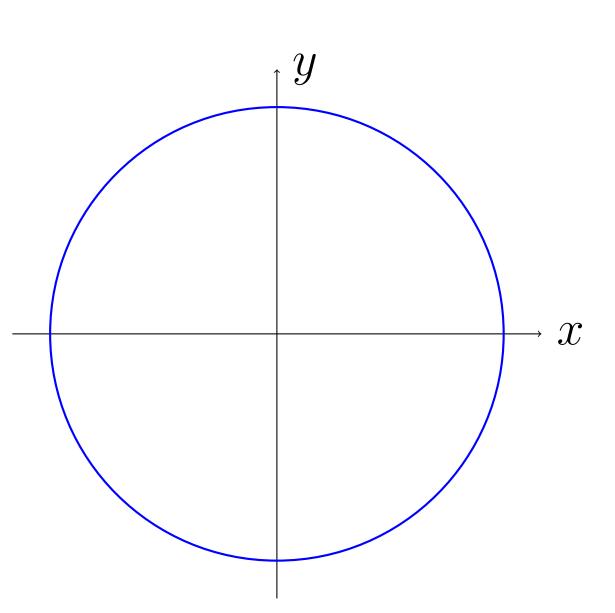


Figure 1: r = a: circle, centre (0, 0), radius a

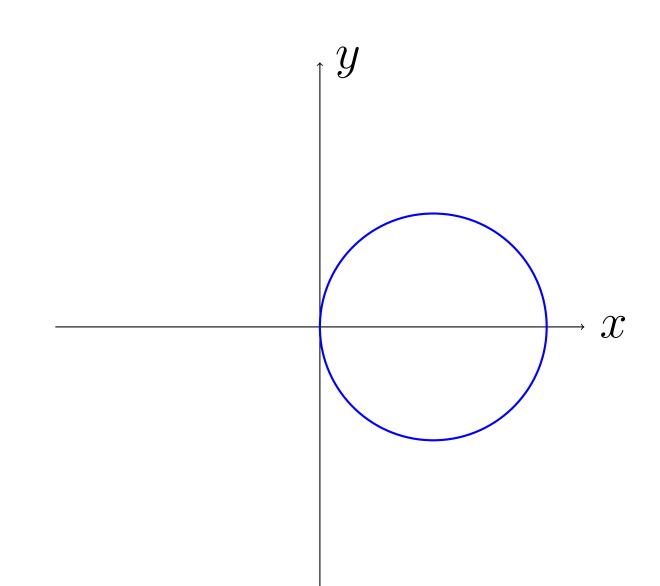


Figure 2: $r = a \cos \theta$: circle, centre $(\frac{1}{2}a, 0)$, radius $\frac{1}{2}a$

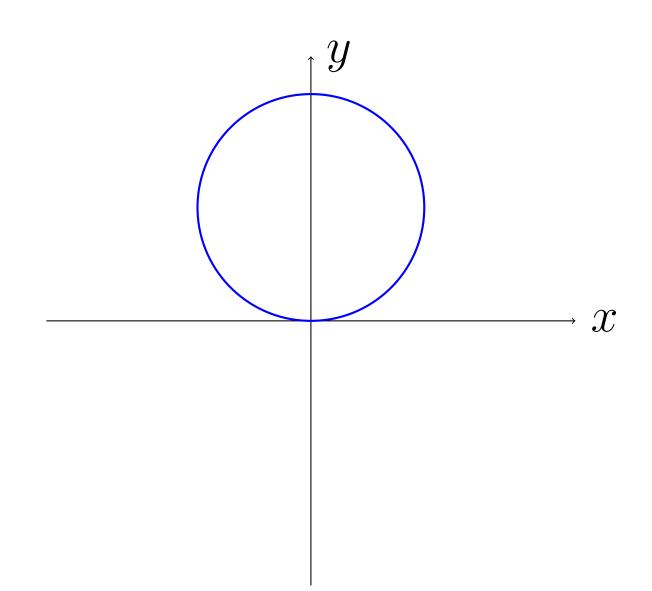


Figure 3: $r = a \sin \theta$: circle, centre $(0, \frac{1}{2}a)$, radius $\frac{1}{2}a$

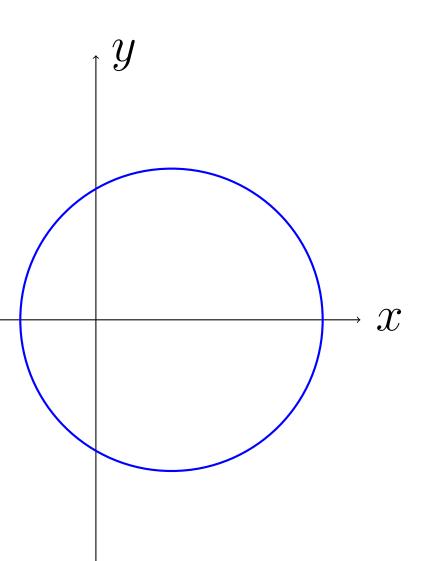


Figure 4: $a^2 = r^2 + b^2 - 2br \cos \theta$: circle, centre (b, 0), radius a

Further Pure Mathematics 2: Part 2 Dr Oliver Further Mathematics

Petal curves

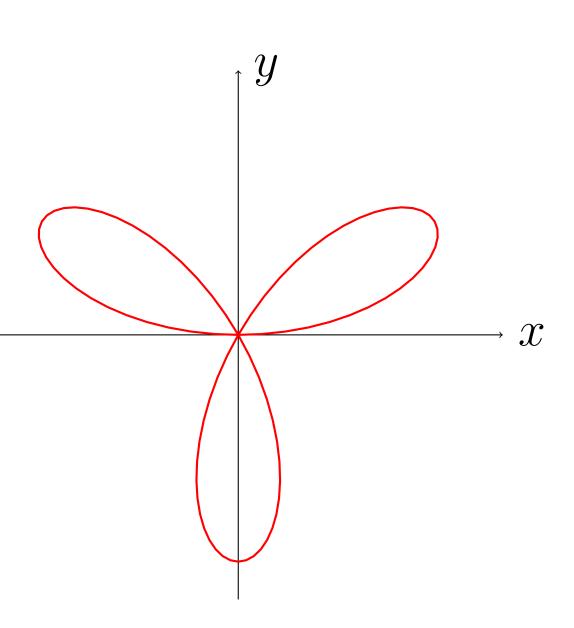


Figure 5: $r = a \sin 3\theta$

Note that there are six radial lines $(\theta = 0, \theta = \frac{\pi}{3}, \theta = \frac{2\pi}{3}, \theta = \pi, \theta = \frac{4\pi}{3}, \text{ and } \theta = \frac{5\pi}{3})$ which should be marked in on a sketch.

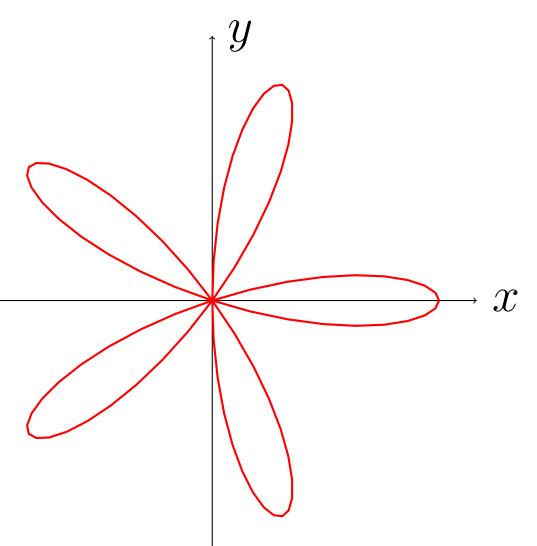


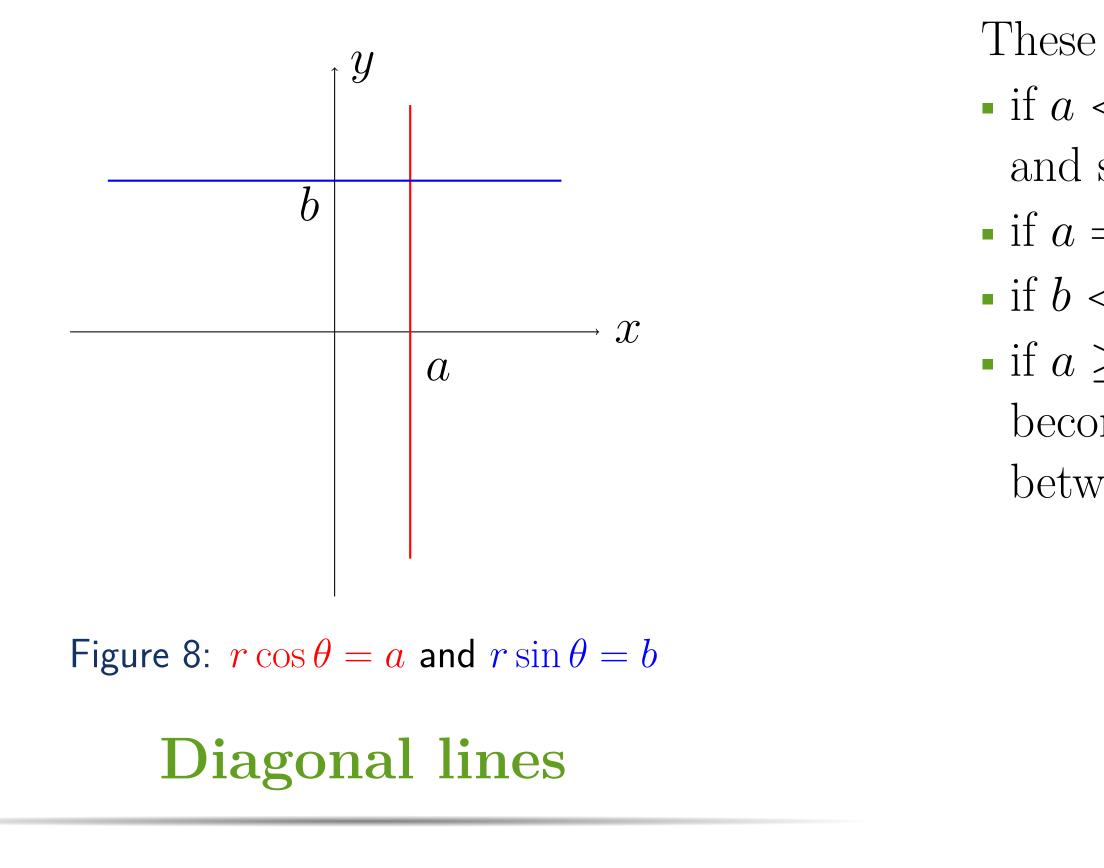
Figure 6: $r = a \cos 5\theta$

The line is perpendicular to a line of length p at an There are ten radial lines which should be marked angle α to the x-axis. on in this sketch: can you find the equation of all ten? Cardioid

Half-lines Figure 10: $r = a(1 + \cos \theta)$ Figure 7: $\theta = \frac{\pi}{4}$ Note that the initial line is a tangent to the curve as it approaches the pole. This half-line has the Cartesian equation

y = x, x > 0.

Horizontal and vertical lines



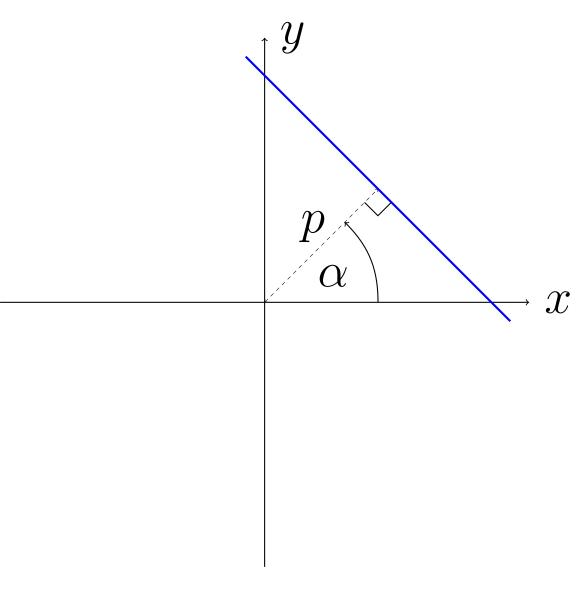
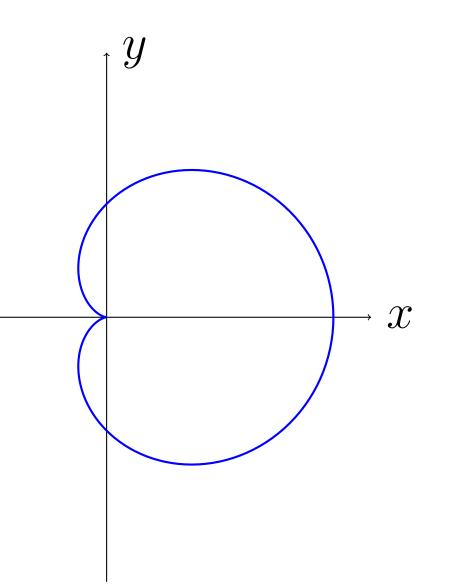


Figure 9: $p = r \cos(\alpha - \theta)$



Limacons

These are curves of the form $r = a + b \cos \theta$: • if a < b then there will be values of θ where r < 0and so no points are plotted;

• if a = b then we have the cardioid; • if b < a < 2b then the curve has a 'dimple'; • if $a \ge 2b$ then the curve loses the 'dimple' and becomes more rounded the greater the difference between a and 2b.

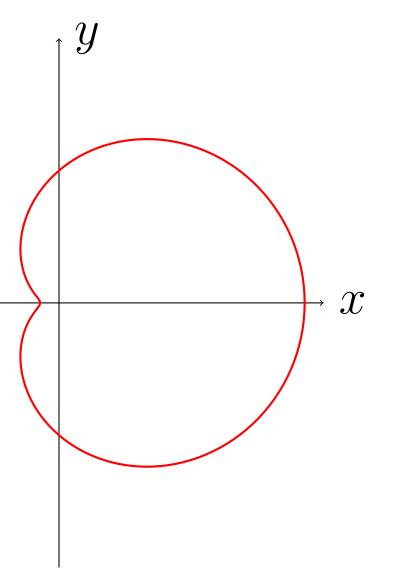


Figure 11: $r = a + b \cos \theta$ where b < a < 2b

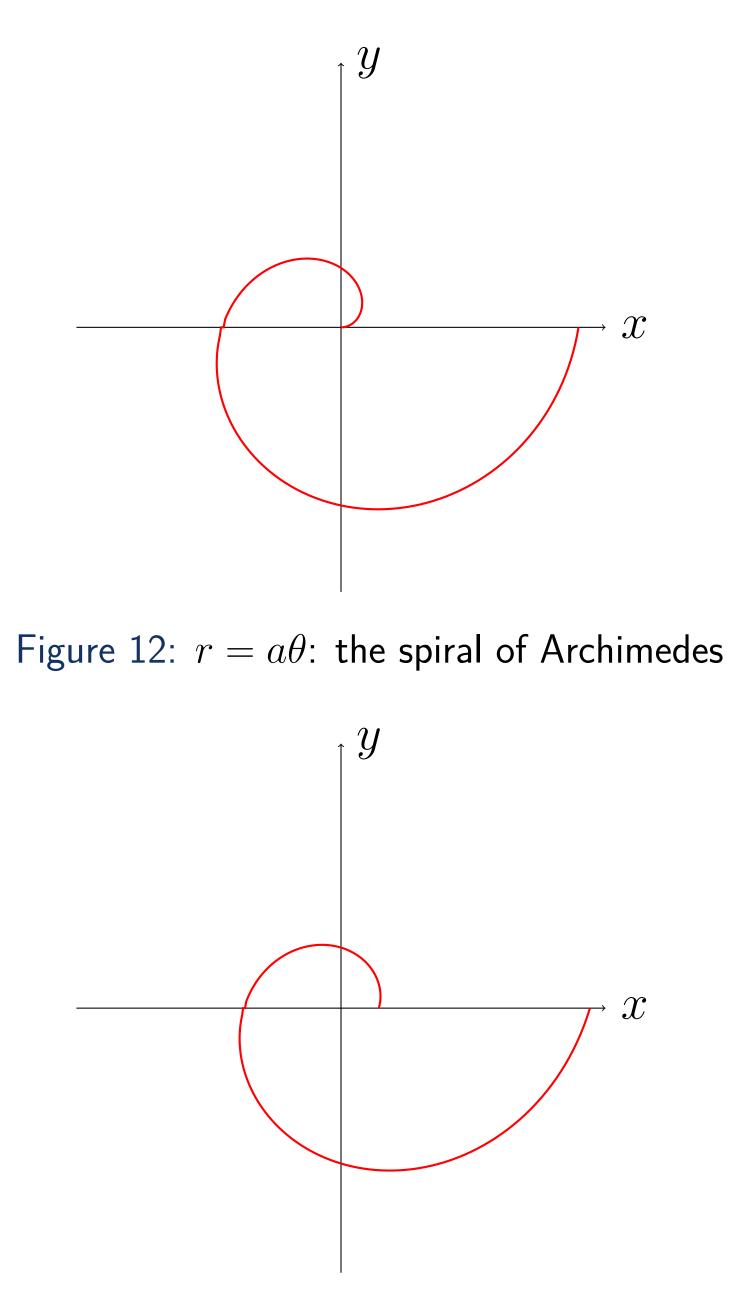


Figure 13: $r = e^{k\theta}$: the equiangular spiral