Dr Oliver Mathematics Disproof

In this note, we will examine disproof.
Normally, the question will tell you about a so-called "proof" and we simply come up with one counter-example.

Example 1

For all positive integer values of $n,\left(n^{3}-n+7\right)$ is prime.

Solution

E.g., we take $n=7$:

$$
7^{3}-7+7=343=7 \times 49
$$

and we have a counter-example.

This is easy: we take the constant and susbtitute it in (unless it is 1 and then you have to be sure).

Example 2

If x and y are irrational and $x \neq y$, then $x y$ is irrational.

Solution

E.g., we take $x=\sqrt{2}$ and $y=2 \sqrt{2}$. Then $x \neq y$ but

$$
x y=\sqrt{2} \times 2 \sqrt{2}=4,
$$

and we have a counter-example.
Here are some examples for you to try.

1. $\left(3^{n}+2\right)$ is prime for all positive integer values of n.
2. For every $n \in \mathbb{N}$, the integer $n^{2}-n+11$ is prime.
3. For all real values of x,

$$
\cos (90-|x|)^{\circ}=\sin x^{\circ}
$$

4. If a and b are positive integers and $a \neq b$, then $\log _{a} b$ is irrational.
5. $\left(n^{2}+3 n+13\right)$ is prime for all positive integer values of n.
6. There exist positive integers, a and b, to $a^{2}-b^{2}=6$.
7. if a is rational and b is irrational then $\log _{a} b$ is irrational.
8. If $x, y \in \mathbb{R}$, then $|x+y|=|x|+|y|$.
9. For all $a, b, c \in \mathbb{N}$, if $a \mid b c$, then $a \mid b$ or $a \mid c$.
10. If $x, y \in \mathbb{R}$, and $|x+y|=|x-y|$, then $y=0$.
11. Samantha says that "all primes are odd". Is she correct?
12. The sum of two distinct square numbers is a square number.
13. All positive cube numbers are either even or one less than a multiple of 3 .
14. If the sum of two integers is even, then one of the summands is even.
15. All natural numbers are either prime or have more than one factor.
16. If a and b are natural numbers, then so is their difference.

