Dr Oliver Mathematics Mathematics Discriminant Past Examination Questions

This booklet consists of 22 questions across a variety of examination topics. The total number of marks available is 150 .

1. Given that the equation

$$
\begin{equation*}
k x^{2}+12 x+k=0 \tag{4}
\end{equation*}
$$

where k is a positive constant, has equal roots, find the value of k.
2. The equation

$$
2 x^{2}-3 x-(k+1)=0,
$$

where k is a constant, has no real roots. Find the set of possible values of k.
3. The equation $x^{2}+3 p x+p=0$, where p is an non-zero constant, has equal roots. Find the value of p.
4. Given that the equation $2 q x^{2}+q x-1=0$, where q is a constant, has no real roots,
(a) show that $q^{2}+8 q<0$.
(b) Hence find the set of possible values of q.
5. The equation

$$
x^{2}+k x+(k+3)=0,
$$

where k is a constant, has different real roots.
(a) Show that $k^{2}-4 k-12>0$.
(b) Find the set of possible values of k.
6.

$$
x^{2}-8 x-29 \equiv(x+a)^{2}+b,
$$

where a and b are constants.
(a) Find the value of a and find the value of b.
(b) Hence, or otherwise, show that the roots of

$$
\begin{equation*}
x^{2}-8 x-29=0 \tag{3}
\end{equation*}
$$

are $c \pm \sqrt{5}$, where c and d are constants.
7. The equation $x^{2}+2 p x+(3 p+4)=0$, where p is a positive constant, has equal roots.
(a) Find the value of p.
(b) For this value of p, solve the equation $x^{2}+2 p x+(3 p+4)=0$.
8. (a) Show that $x^{2}+6 x+11$ can be written as

$$
\begin{equation*}
(x+p)^{2}+q, \tag{2}
\end{equation*}
$$

where p and q are constants.
(b) Sketch the graph of $y=x^{2}+6 x+11$, indicating clearly the coordinates of any intersections with the coordinate axes.
(c) Find the value of the discriminant of $x^{2}+6 x+11$.
9.

$$
\mathrm{f}(x)=x^{2}+(k+3) x+k,
$$

where k is a real constant.
(a) Find the discriminant of $\mathrm{f}(x)$ in terms of k.
(b) Show that the discriminant of $\mathrm{f}(x)$ can be expressed in the form

$$
\begin{equation*}
(k+a)^{2}+b, \tag{2}
\end{equation*}
$$

where a and b are integers to be found.
(c) Show that, for all values of k, the equation $\mathrm{f}(x)=0$ has real roots.
10. The equation

$$
x^{2}+k x+8=k
$$

has no real solutions for x.
(a) Show that k satisfies $k^{2}+4 k-32<0$.
(b) Hence find the set of possible values of k.
11. The equation $k x^{2}+4 x+(5-k)=0$, where k is a constant, has 2 different real solutions for x.
(a) Show that k satisfies $k^{2}-5 k+4>0$.
(b) Hence find the set of possible values of k.
12. The equation

$$
x^{2}+(k-3) x+(3-2 k)=0
$$

where k is a constant, has two distinct real roots.
(a) Show that k satisfies

$$
\begin{equation*}
k^{2}+2 k-3>0 \tag{3}
\end{equation*}
$$

(b) Hence find the set of possible values of k.
13. Given the simultaneous equations

$$
\begin{array}{r}
2 x+y=1 \\
x^{2}-4 k y+5 k=0,
\end{array}
$$

where k is a non-zero constant,
(a) show that

$$
\begin{equation*}
x^{2}+8 k x+k=0 . \tag{2}
\end{equation*}
$$

Given that $x^{2}+8 k x+k=0$ has equal roots,
(b) find the value of k.
(c) For this value of k, find the solution of the simultaneous equations.
14.

$$
x^{2}+2 x+3 \equiv(x+a)^{2}+b,
$$

where a and b are constants.
(a) Find the value of a and find the value of b.
(b) Sketch the graph of $y=x^{2}+2 x+3$, indicating clearly the coordinates of any intersections with the coordinate axes.
(c) Find the value of the discriminant of $x^{2}+2 x+3$. Explain how the sign of the discriminant relates to your sketch in part (b).

The equation $x^{2}+k x+3=0$, where k is a constant, has no real roots.
(d) Find the set of possible values of k, giving your answer in surd form.
15. The equation

$$
(k+3) x^{2}+6 x+k=6
$$

where k is a constant, has two distinct real solutions for x.
(a) Show that k satisfies

$$
\begin{equation*}
k^{2}-2 k-24<0 \tag{3}
\end{equation*}
$$

(b) Hence find the set of possible values of k.
16. The equation

$$
(p-1) x^{2}+4 x+(p-5)=0
$$

where p is a constant, has no real roots.
(a) Show that p satisfies $p^{2}-6 p+1>0$.
(b) Hence find the set of possible values of p.
17.

$$
4 x-5-x^{2}=q-(x+p)^{2}
$$

where p and q are integers.
(a) Find the value of p and the value of q.
(b) Calculate the discriminate of $4 x-5-x^{2}$.
(c) Sketch the graph of $y=4 x-5-x^{2}$, showing the coordinates of any point at which the graph crosses the coordinate axes.
18. The straight line with equation $y=3 x-7$ does not cross or touch the curve with equation $y=2 p x^{2}-6 p x+4 p$, where p is a constant.
(a) Show that $4 p^{2}-20 p+9<0$.
(b) Hence find the set of possible values of p.
19.

$$
\mathrm{f}(x)=x^{2}+4 k x+(3+11 k), \text { where } k \text { is a constant. }
$$

(a) Express $\mathrm{f}(x)$ in the form $(x+p)^{2}+q$, where p and q are constants to be found in terms of k.

Given that the equation $\mathrm{f}(x)=0$ has no real roots,
(b) find the set of possible values of k.

Given that $k=1$,
(c) sketch the graph of $y=\mathrm{f}(x)$, showing the coordinates of any point at which the graph crosses a coordinate axis.
20. Given that

$$
\begin{equation*}
f(x)=2 x^{2}+8 x+3 \tag{2}
\end{equation*}
$$

(a) find the value of the discriminant of $\mathrm{f}(x)$.
(b) Express $\mathrm{f}(x)$ in the form $p(x+q)^{2}+r$, where p, q, and r are integers to be found.

The line $y=4 x+c$, where c is a constant, is a tangent to the curve with equation $y=\mathrm{f}(x)$.
(c) Calculate the value of c.
21. (a) On separate axes sketch the graphs of
(i) $y=-3 x+c$, where c is a positive constant,
(ii) $y=\frac{1}{x}+5$.

On each sketch show the coordinates of any point at which the graph crosses the y-axis and the equation of any horizontal asymptote.

Given that $y=-3 x+c$, where c is a positive constant, meets the curve $y=\frac{1}{x}+5$ at two distinct points,
(b) show that $(5-c)^{2}>12$.
(c) Hence find the range of possible values for c.
22.

$$
\begin{equation*}
\mathrm{f}(x)=x^{2}-8 x+13 \tag{2}
\end{equation*}
$$

Express $\mathrm{f}(x)$ in the form $(x+a)^{2}+b$, where a and b are constants.

